具有非平面静止状态几何的湿响应形状变化的四维多步垂直印刷。

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING
3D Printing and Additive Manufacturing Pub Date : 2025-04-14 eCollection Date: 2025-04-01 DOI:10.1089/3dp.2023.0337
Giulia Pelliccia, Fabio Bianconi, Marco Filippucci, David Correa
{"title":"具有非平面静止状态几何的湿响应形状变化的四维多步垂直印刷。","authors":"Giulia Pelliccia, Fabio Bianconi, Marco Filippucci, David Correa","doi":"10.1089/3dp.2023.0337","DOIUrl":null,"url":null,"abstract":"<p><p>Four-dimensional printing (4DP) via fused deposition modeling has been used to create hygromorphic biocomposite actuators through wood polymer composite (WPC) filaments. The shape-change transformation of the 4DP composite mechanism is preprogrammed by controlling the printing process parameters and the design of the print-path pattern. Until now, most 4DP approaches involving Wood Polymer Composite (WPCs) have focused on planar actuators featuring a bilayer structure composed of laminar layers with distinct material properties. These mechanisms show a laminar initial rest state, presenting as flat objects, and can only achieve a complex three-dimensional shape when subjected to the moisture variations stimulus. The presented research highlights the development of a multistage printing method that expands the capabilities of three-axis printers to enable the 4DP of mechanism with complex nonplanar rest-state geometries. The new technical capabilities of this method are demonstrated here through the creation and testing of novel nonlaminar 4DP mechanisms that harness their unique doubly curved rest-state geometry to achieve kinematic amplification. We expect that this approach can greatly improve the range and complexity of 4DP mechanisms that can be developed using the commonly available three-axis printers.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"12 2","pages":"141-154"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038350/pdf/","citationCount":"0","resultStr":"{\"title\":\"Four-Dimensional Multistep Vertical Printing for Hygroresponsive Shape Change with Nonplanar Rest-State Geometries.\",\"authors\":\"Giulia Pelliccia, Fabio Bianconi, Marco Filippucci, David Correa\",\"doi\":\"10.1089/3dp.2023.0337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Four-dimensional printing (4DP) via fused deposition modeling has been used to create hygromorphic biocomposite actuators through wood polymer composite (WPC) filaments. The shape-change transformation of the 4DP composite mechanism is preprogrammed by controlling the printing process parameters and the design of the print-path pattern. Until now, most 4DP approaches involving Wood Polymer Composite (WPCs) have focused on planar actuators featuring a bilayer structure composed of laminar layers with distinct material properties. These mechanisms show a laminar initial rest state, presenting as flat objects, and can only achieve a complex three-dimensional shape when subjected to the moisture variations stimulus. The presented research highlights the development of a multistage printing method that expands the capabilities of three-axis printers to enable the 4DP of mechanism with complex nonplanar rest-state geometries. The new technical capabilities of this method are demonstrated here through the creation and testing of novel nonlaminar 4DP mechanisms that harness their unique doubly curved rest-state geometry to achieve kinematic amplification. We expect that this approach can greatly improve the range and complexity of 4DP mechanisms that can be developed using the commonly available three-axis printers.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":\"12 2\",\"pages\":\"141-154\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038350/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2023.0337\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2023.0337","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

通过熔融沉积建模的四维打印(4DP)已被用于通过木材聚合物复合材料(WPC)长丝制造湿态生物复合材料执行器。通过控制打印工艺参数和打印路径图案的设计,对4DP复合机构的形状变化进行了预编程。到目前为止,大多数涉及木质聚合物复合材料(wpc)的4DP方法都集中在具有双层结构的平面致动器上,该结构由具有不同材料特性的层流层组成。这些机制表现为层流初始静止状态,呈现为平面物体,只有在水分变化刺激下才能形成复杂的三维形状。提出的研究强调了一种多级打印方法的发展,该方法扩展了三轴打印机的能力,使具有复杂非平面静止状态几何结构的机构的4DP成为可能。本文通过创建和测试新型非层流4DP机构来展示该方法的新技术能力,该机构利用其独特的双弯曲静息状态几何来实现运动放大。我们期望这种方法可以大大提高使用常用的三轴打印机可以开发的4DP机制的范围和复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Four-Dimensional Multistep Vertical Printing for Hygroresponsive Shape Change with Nonplanar Rest-State Geometries.

Four-dimensional printing (4DP) via fused deposition modeling has been used to create hygromorphic biocomposite actuators through wood polymer composite (WPC) filaments. The shape-change transformation of the 4DP composite mechanism is preprogrammed by controlling the printing process parameters and the design of the print-path pattern. Until now, most 4DP approaches involving Wood Polymer Composite (WPCs) have focused on planar actuators featuring a bilayer structure composed of laminar layers with distinct material properties. These mechanisms show a laminar initial rest state, presenting as flat objects, and can only achieve a complex three-dimensional shape when subjected to the moisture variations stimulus. The presented research highlights the development of a multistage printing method that expands the capabilities of three-axis printers to enable the 4DP of mechanism with complex nonplanar rest-state geometries. The new technical capabilities of this method are demonstrated here through the creation and testing of novel nonlaminar 4DP mechanisms that harness their unique doubly curved rest-state geometry to achieve kinematic amplification. We expect that this approach can greatly improve the range and complexity of 4DP mechanisms that can be developed using the commonly available three-axis printers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信