Diego Maximiliano Macall, William A Kerr, Stuart J Smyth
{"title":"Economic surplus implications of Mexico's decision to phaseout genetically modified maize imports.","authors":"Diego Maximiliano Macall, William A Kerr, Stuart J Smyth","doi":"10.1080/21645698.2021.2020028","DOIUrl":"https://doi.org/10.1080/21645698.2021.2020028","url":null,"abstract":"<p><p>The Mexican government has decided to ban imports of genetically modified (GM) maize, to rely on agroecology for maize production to satisfy domestic yellow maize requirements. No economic impact assessment of this policy decision was made public, and the implications of this decision for users of yellow maize and consumers are significant. This article measures the economic surplus generated from Mexican GM yellow maize imports and domestic conventional yellow maize production over the last 20 years, and projects the economic surplus generated over five years from adopting agroecology for yellow maize production. We explore three likely scenarios and find that in all of them, yellow maize processors lose almost twice as much economic surplus as producers. In the most conservative loss estimate (Scenario 1), the surplus loss in five years is equivalent to 35% of the economic surplus generated over the last 21 years from GM maize imports and domestic Mexican conventional production. In all simulated Scenarios, between 2024 and 2025 the price of a metric ton of yellow maize will increase 81percent because of the change in production systems (from conventional to agroecology). These financial losses will ultimately factor into the prices consumers pay for poultry and red meat products, resulting in higher domestic retail food prices.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"13 1","pages":"388-401"},"PeriodicalIF":3.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9728466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10716107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Azka Noureen, Muhammad Zuhaib Khan, Imran Amin, Tayyaba Zainab, Nasim Ahmad, Sibtain Haider, Shahid Mansoor
{"title":"Broad-spectrum resistance against multiple PVY-strains by CRSIPR/Cas13 system in <i>Solanum tuberosum</i> crop.","authors":"Azka Noureen, Muhammad Zuhaib Khan, Imran Amin, Tayyaba Zainab, Nasim Ahmad, Sibtain Haider, Shahid Mansoor","doi":"10.1080/21645698.2022.2080481","DOIUrl":"https://doi.org/10.1080/21645698.2022.2080481","url":null,"abstract":"<p><p><i>Potato virus Y</i> (PVY) is a deadly environmental constraint that damages productivity of potato (<i>Solanum tuberosum</i>) around the globe. One of the major challenges is to develop resistance against PVY. Emerging clustered regularly short palindromic repeat (CRISPR)/Cas systems have the potential to develop resistance against PVY. In the current research, CRISPR-Cas13 has been exploited to target multiple strains of PVY<sup>N</sup>, PVY<sup>O</sup>, and PVY<sup>NTN</sup>. Multiple genes <i>PI, HC-Pro</i>, P3, <i>Cl1, Cl2</i>, and <i>VPg</i> genes of PVY were targeted by CRISPR/Cas13a. Multiplex gRNA cassettes were developed on the conserved regions of the PVY-genes. Three independent CRISPR/Cas13 transgenic potato lines were developed by applying an optimized concentration of trans-ribo zeatin and indole acetic acid at callus development, rooting, and shooting growth stages. The level of resistance in transgenic plants was confirmed through double-antibody sandwich enzyme-linked immunosorbent assay and real-time quantitative PCR. Our results have shown that efficiency of PVY inhibition was positively correlated with the Cas13a/sgRNA expression. Finding provides the specific functionality of Cas13 with specific gRNA cassette and engineering the potential resistance in potato crop against multiple strains of PVY.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"13 1","pages":"97-111"},"PeriodicalIF":3.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176253/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9702803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive COMPARE database reduces allergenic risk of novel food proteins.","authors":"Rod A Herman, Ping Song","doi":"10.1080/21645698.2022.2079180","DOIUrl":"https://doi.org/10.1080/21645698.2022.2079180","url":null,"abstract":"<p><p>The comprehensiveness of the allergen database used to bioinformatically compare a novel food protein with known allergens is critical to the ability to assess the allergenic risk of newly expressed proteins in genetically engineered crops. The strength of the relationship between a candidate GE protein's amino acid sequence and that of known allergens is used to predict cross-reactive risk. The number of truly novel allergen sequences added annually to the COMPARE database reflects on the comprehensiveness of our knowledge of allergen amino acid sequence diversity. Here, we investigated the most recent five years of updates to the COMPARE allergen database for truly novel entries. Results indicate that few truly novel sequences are added each year, suggesting that the database and our knowledge of allergen sequence diversity is currently quite comprehensive, and that current in silico prediction of allergenic risk for novel food proteins is robust.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"13 1","pages":"112-118"},"PeriodicalIF":3.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f8/73/KGMC_13_2079180.PMC9196780.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10316724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patricia V Miranda, Bernardo F Iglesias, María V Charriere, Moisés Burachik
{"title":"Drought tolerant wheat IND-ØØ412-7 is nutritionally equivalent to its Non-Transgenic Comparator.","authors":"Patricia V Miranda, Bernardo F Iglesias, María V Charriere, Moisés Burachik","doi":"10.1080/21645698.2022.2079179","DOIUrl":"https://doi.org/10.1080/21645698.2022.2079179","url":null,"abstract":"<p><p>Expression of the HAHB4 sunflower transcription factor confers drought tolerance to wheat event IND-ØØ412-7 (HB4® wheat). After confirming the compositional equivalence of event IND-ØØ412-7 with conventional wheat, its nutritional similarity to its non-genetically modified (GM) counterpart was analyzed by performing a 42-day broiler feeding study. Isoenergetic diets containing 40% flour from wheat event IND-ØØ412-7, its non-GM counterpart Cadenza, and a commercial variety were included in the study. Broilers' performance was analyzed by measuring feed intake, weight gain, feed conversion, and time to reach 2.8 kgs. The yield was evaluated by carcass weight, breast meat, and abdominal fat. No differences were found between wheat event IND-ØØ412-7 and the non-GM counterpart. A few significant differences were found with the commercial variety which were associated with the genetic background, different from the other two materials. These results support the nutritional equivalence of event IND-ØØ412-7 with conventional wheat.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"13 1","pages":"119-125"},"PeriodicalIF":3.9,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10321375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sendhil R, Joan Nyika, Sheel Yadav, Joby Mackolil, Rama Prashat G, Endashaw Workie, Raja Ragupathy, P Ramasundaram
{"title":"Genetically modified foods: bibliometric analysis on consumer perception and preference.","authors":"Sendhil R, Joan Nyika, Sheel Yadav, Joby Mackolil, Rama Prashat G, Endashaw Workie, Raja Ragupathy, P Ramasundaram","doi":"10.1080/21645698.2022.2038525","DOIUrl":"10.1080/21645698.2022.2038525","url":null,"abstract":"<p><p>In this study, we present the bibliometric trends emerging from research outputs on consumer perception and preference for genetically modified (GM) foods and policy prescriptions for enabling the consumption using VOSviewer visualization software. Consumers' positive response is largely influenced by the decision of the governments to ban or approve the GM crops cultivation. Similarly, the public support increases when the potential benefits of the technology are well articulated, consumption increases with a price discount, people's trust on the government and belief in science increases with a positive influence by the media. Europe and the USA are the first region and country, respectively, in terms of the number of active institutions per research output, per-capita GDP publication and citations. We suggest research-, agri-food industries-, and society-oriented policies to be implemented by the stakeholders to ensure the safety of GM foods, encourage consumer-based studies, and increase public awareness toward these food products.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"13 1","pages":"65-85"},"PeriodicalIF":4.5,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41348212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naglaa A Abdallah, Hany Elsharawy, Hamiss A Abulela, Roger Thilmony, Abdelhadi A Abdelhadi, Nagwa I Elarabi
{"title":"Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat.","authors":"Naglaa A Abdallah, Hany Elsharawy, Hamiss A Abulela, Roger Thilmony, Abdelhadi A Abdelhadi, Nagwa I Elarabi","doi":"10.1080/21645698.2022.2120313","DOIUrl":"10.1080/21645698.2022.2120313","url":null,"abstract":"<p><p>Genome editing tools have rapidly been adopted by plant scientists for crop improvement. Genome editing using a multiplex sgRNA-CRISPR/Cas9 genome editing system is a useful technique for crop improvement in monocot species. In this study, we utilized precise gene editing techniques to generate wheat 3'(2'), 5'-bisphosphate nucleotidase (<i>TaSal1</i>) mutants using a multiplex sgRNA-CRISPR/Cas9 genome editing system. Five active <i>TaSal1</i> homologous genes were found in the genome of Giza168 in addition to another apparently inactive gene on chromosome 4A. Three gRNAs were designed and used to target exons 4, 5 and 7 of the five wheat <i>TaSal1</i> genes. Among the 120 Giza168 transgenic plants, 41 lines exhibited mutations and produced heritable <i>TaSal1</i> mutations in the M<sub>1</sub> progeny and 5 lines were full 5 gene knock-outs. These mutant plants exhibit a rolled-leaf phenotype in young leaves and bended stems, but there were no significant changes in the internode length and width, leaf morphology, and stem shape. Anatomical and scanning electron microscope studies of the young leaves of mutated <i>TaSal1</i> lines showed closed stomata, increased stomata width and increase in the size of the bulliform cells. <i>Sal1</i> mutant seedlings germinated and grew better on media containing polyethylene glycol than wildtype seedlings. Our results indicate that the application of the multiplex sgRNA-CRISPR/Cas9 genome editing is efficient tool for mutating more multiple TaSal1 loci in hexaploid wheat.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":" ","pages":"1-17"},"PeriodicalIF":3.9,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33490173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biotechnology in China – regulation, investment, and delayed commercialization","authors":"Z. Xiao, W. Kerr","doi":"10.1080/21645698.2022.2068336","DOIUrl":"https://doi.org/10.1080/21645698.2022.2068336","url":null,"abstract":"ABSTRACT China has been investing heavily in biotechnology to increase agricultural productivity. While a number of Chinese developed GM crops have cleared the required scientific hurdles – some more than a decade ago – commercialization has not been approved. The regulatory regime for GMOs in China is relatively less well understood than that of the US or the EU. This paper provides a systematic overview of China’s regulatory regime, R&D investment and delayed commercialization decisions on biotechnology over the last 40 years and draws some conclusions regarding the likelihood of the commercialization for major GM crops in the future.","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"13 1","pages":"86 - 96"},"PeriodicalIF":3.9,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49246428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling antecedent factors involved in behavioral intention towards technology application of genetically modified crops","authors":"Yahya Safi Sis, A. Rezaei, Hamid Karimi, P. Ataei","doi":"10.1080/21645698.2022.2057160","DOIUrl":"https://doi.org/10.1080/21645698.2022.2057160","url":null,"abstract":"ABSTRACT This research aimed to study behavioral intention toward genetically modified crop (GMC) technology. The statistical population was composed of all staff experts of Jihad-e Agriculture Organization of Iran (N = 837). The sample size was 310 agricultural experts taken by simple randomization. The data collection tool was a questionnaire. Data were analyzed by structural equations modeling. The results provided enough evidence to confirm the negative and significant effect of ethical concerns on behavioral intention toward GMC technology and the positive and significant effect of attitude toward technology and social impact on behavioral intention. According to the results, it is necessary to hold training courses inside and outside the country, adopt bottom-up management, use experienced and prospective managers, involve experts in planning and development of GMCs to a greater extent, and share personal experiences in training courses to change people’ attitude.","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"13 1","pages":"50 - 64"},"PeriodicalIF":3.9,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49325783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sajid Fiaz, Xiukang Wang, Sher Aslam Khan, Sunny Ahmar, Mehmood Ali Noor, Aamir Riaz, Kazim Ali, Farhat Abbas, Freddy Mora-Poblete, Carlos R Figueroa, Badr Alharthi
{"title":"Novel plant breeding techniques to advance nitrogen use efficiency in rice: A review.","authors":"Sajid Fiaz, Xiukang Wang, Sher Aslam Khan, Sunny Ahmar, Mehmood Ali Noor, Aamir Riaz, Kazim Ali, Farhat Abbas, Freddy Mora-Poblete, Carlos R Figueroa, Badr Alharthi","doi":"10.1080/21645698.2021.1921545","DOIUrl":"https://doi.org/10.1080/21645698.2021.1921545","url":null,"abstract":"<p><p>Recently, there has been a remarkable increase in rice production owing to genetic improvement and increase in application of synthetic fertilizers. For sustainable agriculture, there is dire need to maintain a balance between profitability and input cost. To meet the steady growing demands of the farming community, researchers are utilizing all available resources to identify nutrient use efficient germplasm, but with very little success. Therefore, it is essential to understand the underlying genetic mechanism controlling nutrients efficiency, with the nitrogen use efficiency (NUE) being the most important trait. Information regarding genetic factors controlling nitrogen (N) transporters, assimilators, and remobilizers can help to identify candidate germplasms via high-throughput technologies. Large-scale field trials have provided morphological, physiological, and biochemical trait data for the detection of genomic regions controlling NUE. The functional aspects of these attributes are time-consuming, costly, labor-intensive, and less accurate. Therefore, the application of novel plant breeding techniques (NPBTs) with context to genome engineering has opened new avenues of research for crop improvement programs. Most recently, genome editing technologies (GETs) have undergone enormous development with various versions from Cas9, Cpf1, base, and prime editing. These GETs have been vigorously adapted in plant sciences for novel trait development to insure food quantity and quality. Base editing has been successfully applied to improve NUE in rice, demonstrating the potential of GETs to develop germplasms with improved resource use efficiency. NPBTs continue to face regulatory setbacks in some countries due to genome editing being categorized in the same category as genetically modified (GM) crops. Therefore, it is essential to involve all stakeholders in a detailed discussion on NPBTs and to formulate uniform policies tackling biosafety, social, ethical, and environmental concerns. In the current review, we have discussed the genetic mechanism of NUE and NPBTs for crop improvement programs with proof of concepts, transgenic and GET application for the development of NUE germplasms, and regulatory aspects of genome edited crops with future directions considering NUE.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 2","pages":"627-646"},"PeriodicalIF":3.9,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21645698.2021.1921545","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39031227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Salman Mubarik, Xiukang Wang, Sultan Habibullah Khan, Aftab Ahmad, Zulqurnain Khan, Muhammad Waqas Amjid, Muhammad Khuram Razzaq, Zulfiqar Ali, Muhammad Tehseen Azhar
{"title":"Engineering broad-spectrum resistance to cotton leaf curl disease by CRISPR-Cas9 based multiplex editing in plants.","authors":"Muhammad Salman Mubarik, Xiukang Wang, Sultan Habibullah Khan, Aftab Ahmad, Zulqurnain Khan, Muhammad Waqas Amjid, Muhammad Khuram Razzaq, Zulfiqar Ali, Muhammad Tehseen Azhar","doi":"10.1080/21645698.2021.1938488","DOIUrl":"https://doi.org/10.1080/21645698.2021.1938488","url":null,"abstract":"<p><p>Advances in genome editing technologies have tremendous potential to address the limitations of classical resistance breeding. CRISPR-Cas9 based gene editing has been applied successfully in plants to tolerate virus infections. In this study, we successfully tested CRISPR-Cas9 system to counteract cotton leaf curl disease (CLCuD) caused by whitefly transmitted cotton leaf curl viruses (CLCuVs). We also analyzed the ability of CLCuV to escape the Cas9 endonuclease activity. Targeting overlapping genes of most prevalent CLCuVs with three gRNAs resulted in virus interference, as validated by low virus titer. Furthermore, multiplex CRISPR-Cas9 construct simultaneously targeting six genes of CLCuV, was found more effective to interfere with virus proliferation compared to targeting single region individually. Additionally, transgenic <i>N. benthamiana</i> plants expressing multiple gRNAs simultaneously showed enhanced tolerance against CLCuV infection when compared to wild-type plants. T7 Endonuclease-I (T7EI) assay, showing indels in the CLCuV genome, confirmed the occurrence of double strand breaks (DSBs) in DNA at target sequence induced by Cas9 endonuclease. We observed that targeting CLCuV genome at multiple sites simultaneously resulted in better interference, also with inefficient recovery of altered virus molecules. Next, we tested multiplex construct in cotton to interfere CLCuV infection. We found significant decrease in virus accumulation in cotton leaves co-infiltrated with multiplex cassette and virus compared to cotton leaves infiltrated with virus only. The results demonstrate future use of CRISPR-Cas9 system for engineering virus resistance in crops. Moreover, our results also advocate that resistance to mixed virus infections can be engineered using multiplex genome editing.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 2","pages":"647-658"},"PeriodicalIF":3.9,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21645698.2021.1938488","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39091673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}