Paleoceanography and Paleoclimatology最新文献

筛选
英文 中文
The Relationship Between the Global Mean Deep‐Sea and Surface Temperature During the Early Eocene 早始新世全球平均深海与地表温度的关系
IF 3.5 2区 地球科学
Paleoceanography and Paleoclimatology Pub Date : 2023-02-17 DOI: 10.1029/2022PA004532
Barbara Goudsmit‐Harzevoort, A. Lansu, M. Baatsen, A. S. von der Heydt, N. D. de Winter, Yurui Zhang, A. Abe‐Ouchi, A. D. de Boer, W. Chan, Y. Donnadieu, D. Hutchinson, G. Knorr, J. Ladant, P. Morozova, I. Niezgodzki, S. Steinig, A. Tripati, Zhongshi Zhang, Jiang Zhu, M. Ziegler
{"title":"The Relationship Between the Global Mean Deep‐Sea and Surface Temperature During the Early Eocene","authors":"Barbara Goudsmit‐Harzevoort, A. Lansu, M. Baatsen, A. S. von der Heydt, N. D. de Winter, Yurui Zhang, A. Abe‐Ouchi, A. D. de Boer, W. Chan, Y. Donnadieu, D. Hutchinson, G. Knorr, J. Ladant, P. Morozova, I. Niezgodzki, S. Steinig, A. Tripati, Zhongshi Zhang, Jiang Zhu, M. Ziegler","doi":"10.1029/2022PA004532","DOIUrl":"https://doi.org/10.1029/2022PA004532","url":null,"abstract":"Estimates of global mean near‐surface air temperature (global SAT) for the Cenozoic era rely largely on paleo‐proxy data of deep‐sea temperature (DST), with the assumption that changes in global SAT covary with changes in the global mean deep‐sea temperature (global DST) and global mean sea‐surface temperature (global SST). We tested the validity of this assumption by analyzing the relationship between global SST, SAT, and DST using 25 different model simulations from the Deep‐Time Model Intercomparison Project simulating the early Eocene Climatic Optimum (EECO) with varying CO2 levels. Similar to the modern situation, we find limited spatial variability in DST, indicating that local DST estimates can be regarded as a first order representative of global DST. In line with previously assumed relationships, linear regression analysis indicates that both global DST and SAT respond stronger to changes in atmospheric CO2 than global SST by a similar factor. Consequently, this model‐based analysis validates the assumption that changes in global DST can be used to estimate changes in global SAT during the early Cenozoic. Paleo‐proxy estimates of global DST, SST, and SAT during EECO show the best fit with model simulations with a 1,680 ppm atmospheric CO2 level. This matches paleo‐proxies of EECO atmospheric CO2, indicating a good fit between models and proxy‐data.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43873509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weakening of the Summer Monsoon Over the Past 150 Years Shown by a Tree‐Ring Record From Shandong, Eastern China, and the Potential Role of North Atlantic Climate 从中国东部山东的树木年轮记录看近150年来夏季风的减弱以及北大西洋气候的潜在作用
IF 3.5 2区 地球科学
Paleoceanography and Paleoclimatology Pub Date : 2023-02-15 DOI: 10.1029/2022PA004495
Qiaomei Chen, Xiaojian Zhang, F. Chen, Heli Zhang, Yu-jiang Yuan, Shulong Yu, M. Hadad, F. Roig
{"title":"Weakening of the Summer Monsoon Over the Past 150 Years Shown by a Tree‐Ring Record From Shandong, Eastern China, and the Potential Role of North Atlantic Climate","authors":"Qiaomei Chen, Xiaojian Zhang, F. Chen, Heli Zhang, Yu-jiang Yuan, Shulong Yu, M. Hadad, F. Roig","doi":"10.1029/2022PA004495","DOIUrl":"https://doi.org/10.1029/2022PA004495","url":null,"abstract":"The causes of the decreased intensity of the East Asian summer monsoon (EASM) over the past 150 years are still not fully understood, although several studies have linked the monsoon weakening to the warming of tropical oceans. Here, we use pine tree‐rings to reconstruct the precipitation total for April–August from 1810 to 2018, in south‐central Shandong Province, in the EASM region. The reconstruction accounts for 41.8% of the instrumental precipitation variance during 1965–2018. The EASM precipitation reconstruction shows extreme pluvial conditions in 1832, 1833, 1886, and 1998, and extreme droughts in 1878, 1901, and 1910, which correspond precisely to extreme climatic events recorded in historical documents. The reconstructed precipitation reveals a drying trend since the 1870s, which matches well with the decreasing trend of the EASM inferred from stalagmite oxygen isotope (δ18O) records and climate simulations. The trend of decreasing precipitation since the 1870s, indicated by our reconstruction, is significantly correlated with the spring sea surface temperature (SST) of the North Atlantic Ocean, which suggests that the EASM weakening was linked to North Atlantic SST variations during the past 150 years. This potential role of North Atlantic SST variability is supported by climate sensitivity simulations of the Community Earth System Model. North Atlantic SST variability induces two teleconnections of Rossby‐like wave propagation from the North Atlantic into East Asia, resulting in anomalous precipitation in this region.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47679060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A brGDGT‐Based Reconstruction of Terrestrial Temperature From the Maritime Continent Spanning the Last Glacial Maximum 基于brdgt的末次盛冰期海洋大陆陆地温度重建
IF 3.5 2区 地球科学
Paleoceanography and Paleoclimatology Pub Date : 2023-02-13 DOI: 10.1029/2022PA004501
M. Parish, X. Du, S. Bijaksana, J. Russell
{"title":"A brGDGT‐Based Reconstruction of Terrestrial Temperature From the Maritime Continent Spanning the Last Glacial Maximum","authors":"M. Parish, X. Du, S. Bijaksana, J. Russell","doi":"10.1029/2022PA004501","DOIUrl":"https://doi.org/10.1029/2022PA004501","url":null,"abstract":"The tropics exert enormous influence on global climate. Despite the importance of tropical regions, the terrestrial temperature history in the Indo‐Pacific Warm Pool (IPWP) region during the last deglaciation is poorly constrained. Although numerous sea surface temperature (SST) reconstructions provide estimates of SST warming from the Last Glacial Maximum to the Holocene, the timing of the onset of deglacial warming varies between records and inhibits determining the forcings driving deglacial warming in the IPWP. We present a 60,000‐year long temperature reconstruction based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) in a sediment core from Lake Towuti, located in Sulawesi, Indonesia. BrGDGTs are bacterial membrane‐spanning lipids that, globally, become more methylated with decreasing temperature and more cyclized with decreasing pH. Although changes in temperature are the dominant control on brGDGTs in regional and global calibrations, we find that the cyclization of the brGDGTs is a major mode of variation at Lake Towuti that records important changes in the lacustrine biogeochemical environment. We separate the influence of lake chemistry changes from temperature changes on the brGDGT records, and develop a temperature record spanning the last 60,000 years. The timing of the deglacial warming in our record occurs after the onset of the deglacial increase in CO2 concentrations, which suggests rising greenhouse gas concentrations and the associated radiative forcing may have forced deglacial warming in the IPWP. Peaks in temperature around 55 and 34 ka indicate that Northern Hemisphere summer insolation may also influence land surface temperature in the IPWP region.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41648404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Climate Variations in the Past 250 Million Years and Contributing Factors 过去2.5亿年的气候变化及其影响因素
IF 3.5 2区 地球科学
Paleoceanography and Paleoclimatology Pub Date : 2023-02-01 DOI: 10.1029/2022PA004503
Xiang Li, Yongyun Hu, Jun Yang, Mengyu Wei, Jiaqi Guo, Jiawenjing Lan, Qifan Lin, Shuai Yuan, Jian Zhang, Qiang Wei, Yonggang Liu, Jianqiang Nie, Y. Xia, Shineng Hu
{"title":"Climate Variations in the Past 250 Million Years and Contributing Factors","authors":"Xiang Li, Yongyun Hu, Jun Yang, Mengyu Wei, Jiaqi Guo, Jiawenjing Lan, Qifan Lin, Shuai Yuan, Jian Zhang, Qiang Wei, Yonggang Liu, Jianqiang Nie, Y. Xia, Shineng Hu","doi":"10.1029/2022PA004503","DOIUrl":"https://doi.org/10.1029/2022PA004503","url":null,"abstract":"We simulate climate variations in the past 250 million years (Myr), using the fully coupled Community Earth System Model version 1.2.2 (CESM1.2.2) with the Community Atmosphere Model version 4 (CAM4). Three groups of simulations are performed, each including 26 simulations, with a 10‐million‐year interval. The Control group is constrained by paleogeography, increasing solar radiation, and reconstructed global mean surface temperatures (GMSTs) by tuning CO2 concentrations. No ice sheets are prescribed for all simulations except for the pre‐industrial (PI) simulation in which modern geography, ice sheets and vegetation are used. Simulated zonal mean surface temperatures are always higher than those of proxy reconstructions in the tropics, but lower than those of proxy reconstructions at middle latitudes. The relative importance of individual contributing factors for surface temperature variations in the past 250 Myr is diagnosed, using the energy‐balance analysis. Results show that greenhouse gases are the major driver in regulating GMST variations, with a maximum contribution of 12.2°C. Varying surface albedo contributes to GMST variations by 3.3°C. Increasing solar radiation leads to GMST increases by 1.5°C. Cloud radiative effects have relatively weak impacts on GMST variations, less than ±0.8°C. For comparison, two groups of sensitivity simulations are performed. One group has the CO2 concentration fixed at 10 times the PI value, and the other group has fixed CO2 concentration of 10 times the PI value and fixed solar radiation at the present‐day value, showing that varying both paleogeography and solar constant and varying paleogeography alone result in GMST changes by 7.3°C and 5.6°C, respectively.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45341089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Atmospheric CO2 Concentration Based on Boron Isotopes Versus Simulations of the Global Carbon Cycle During the Plio‐Pleistocene 基于硼同位素的大气CO2浓度与上新世全球碳循环模拟
IF 3.5 2区 地球科学
Paleoceanography and Paleoclimatology Pub Date : 2023-02-01 DOI: 10.1029/2022PA004439
P. Köhler
{"title":"Atmospheric CO2 Concentration Based on Boron Isotopes Versus Simulations of the Global Carbon Cycle During the Plio‐Pleistocene","authors":"P. Köhler","doi":"10.1029/2022PA004439","DOIUrl":"https://doi.org/10.1029/2022PA004439","url":null,"abstract":"Atmospheric carbon dioxide concentrations (pCO2) beyond ice core records have been reconstructed from δ11B derived from planktic foraminifera found in equatorial sediment cores. Here, I applied a carbon cycle model over the Plio‐Pleistocene to evaluate the assumptions leading to these numbers. During glacials times, simulated atmospheric pCO2 was unequilibrated with pCO2 in the equatorial surface ocean by up to 35 ppm while the δ11B‐based approaches assume unchanged (quasi)equilibrium between both. In the Pliocene, δ11B‐based estimates of surface ocean pH are lower in the Pacific than in the Atlantic resulting in higher calculated pCO2. This offset in pH between ocean basins is not supported by models. To calculate pCO2 in surface waters out of the δ11B‐based pH some assumptions on either total alkalinity or dissolved inorganic carbon are necessary. However, the assumed values of these under‐constrained variables were according to my results partly inconsistent with chemically possible combinations within the marine carbonate system. The model results show glacial/interglacial variability in total alkalinity of the order of 100 μmol/kg, which is rarely applied to proxy reconstructions. Simulated atmospheric pCO2 is tightly (r2 > 0.9) related to equatorial surface‐ocean pH, which can be used for consistency checks. Long‐term trends in volcanic CO2 outgassing and the strength of the continental weathering fluxes are still unconstrained, allowing for a wide range of possible atmospheric pCO2 across the Plio‐Pleistocene. Nevertheless, this carbon cycle analysis suggests that reported atmospheric pCO2 above 500 ppm in the Pliocene might, for various reasons, need to be revised to smaller numbers.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42654806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expansion of Reducing Marine Environments During the Ireviken Biogeochemical Event: Evidence From the Altajme Core, Gotland, Sweden Ireviken生物地球化学事件期间减少海洋环境的扩展:来自瑞典哥德兰Altajme岩芯的证据
IF 3.5 2区 地球科学
Paleoceanography and Paleoclimatology Pub Date : 2023-02-01 DOI: 10.1029/2022PA004484
B. Stolfus, Lindsi J. Allman, Seth A. Young, M. Calner, Emma R. Hartke, Stephan C. Oborny, A. Bancroft, B. Cramer
{"title":"Expansion of Reducing Marine Environments During the Ireviken Biogeochemical Event: Evidence From the Altajme Core, Gotland, Sweden","authors":"B. Stolfus, Lindsi J. Allman, Seth A. Young, M. Calner, Emma R. Hartke, Stephan C. Oborny, A. Bancroft, B. Cramer","doi":"10.1029/2022PA004484","DOIUrl":"https://doi.org/10.1029/2022PA004484","url":null,"abstract":"New δ34Spy (pyrite) and δ34SCAS (carbonate‐associated sulfate) across the Llandovery‐Wenlock boundary (∼432 Ma) provide evidence for the expansion of reduced marine environments during the Ireviken Biogeochemical Event. This event consists of a major positive carbon isotope excursion, increased biotic turnover, and other major perturbations and changes within biogeochemical cycles. This interval of time has been hypothesized to coincide with an expansion of reducing marine environments that caused increased organic carbon burial and led to the Ireviken positive carbon isotope excursion (ICIE). Previous high‐resolution carbon isotope work in the Altajme core from Gotland, Sweden provides the highest resolution record of the ICIE yet documented and provides an ideal expanded stratigraphic section to study this event. Local expansion of reduced marine environments within the deeper shelf setting of the Altajme core is indicated by a positive shift in δ34Spy values and increase in pyrite sulfur concentrations at the onset of the ICIE. These data are indicative of increased microbial sulfate reduction within this portion of the Baltic Basin. Combined with new δ34SCAS data from this core, as well as additional data from distant basins, the new data presented here suggest a global expansion of reduced environments led to an increase in organic carbon burial and the ICIE.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46164777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Carbon Cycle Responses to Changes in Weathering and the Long‐Term Fate of Stable Carbon Isotopes 碳循环对风化变化的响应和稳定碳同位素的长期命运
IF 3.5 2区 地球科学
Paleoceanography and Paleoclimatology Pub Date : 2023-02-01 DOI: 10.1029/2022PA004577
A. Jeltsch-Thömmes, F. Joos
{"title":"Carbon Cycle Responses to Changes in Weathering and the Long‐Term Fate of Stable Carbon Isotopes","authors":"A. Jeltsch-Thömmes, F. Joos","doi":"10.1029/2022PA004577","DOIUrl":"https://doi.org/10.1029/2022PA004577","url":null,"abstract":"The causes of CO2 variations over the past million years remain poorly understood. Imbalances between the input of elements from rock weathering and their removal from the atmosphere‐ocean‐biosphere system to the lithosphere likely contributed to reconstructed changes. We employ the Bern3D model to investigate carbon‐climate responses to step‐changes in the weathering input of phosphorus, alkalinity, carbon, and carbon isotope ratio (δ13C) in simulations extending up to 600,000 years. CO2 and climate approach a new equilibrium within a few ten thousand years, whereas equilibrium is established after several hundred thousand years for δ13C. These timescales represent a challenge for the initialization of sediment‐enabled models and unintended drifts may be larger than forced signals in simulations of the last glacial–interglacial cycle. Changes in dissolved CO2 change isotopic fractionation during marine photosynthesis. This causes distinct spatio‐temporal perturbations in δ13C and affects the burial flux of 13C. We force a cost‐efficient emulator, based on the Bern3D results, with contrasting literature‐based weathering histories over the last 800 thousand years. Glacial–interglacial amplitudes of up to 30 ppm in CO2, 0.05‰ in δ13C, and ∼15 mmol m−3 in deep ocean CO32− ${text{CO}}_{3}^{2-}$ are emulated for changes in carbonate rock weathering. Plausible input from the decomposition of organic matter on shelves causes variations of up to 10 ppm in CO2, 0.09‰ in δ13C, and 5 mmol m−3 in CO32− ${text{CO}}_{3}^{2-}$ , highlighting the non‐negligible effect of weathering‐burial imbalances.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47635833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Late Miocene to Present Paleoclimatic and Paleoenvironmental Evolution of the South China Sea Recorded in the Magneto‐Cyclostratigraphy of IODP Site U1505 IODP U1505遗址磁旋地层记录的南海晚中新世至今古气候和古环境演化
IF 3.5 2区 地球科学
Paleoceanography and Paleoclimatology Pub Date : 2023-01-31 DOI: 10.1029/2022PA004547
Yunfeng Nie, Huaichun Wu, S. Satolli, E. Ferré, M. Shi, Q. Fang, Ye Xu, Shihong Zhang, Haiyan Li, Tianshui Yang
{"title":"Late Miocene to Present Paleoclimatic and Paleoenvironmental Evolution of the South China Sea Recorded in the Magneto‐Cyclostratigraphy of IODP Site U1505","authors":"Yunfeng Nie, Huaichun Wu, S. Satolli, E. Ferré, M. Shi, Q. Fang, Ye Xu, Shihong Zhang, Haiyan Li, Tianshui Yang","doi":"10.1029/2022PA004547","DOIUrl":"https://doi.org/10.1029/2022PA004547","url":null,"abstract":"The continuous sedimentary cores recovered at the International Ocean Discovery Program (IODP) Site U1505, Expedition 368, provide an opportunity for paleoceanography and paleoclimate reconstruction in the continental margin of the northern South China Sea (SCS). In this study, we conducted detailed rock‐ and paleomagnetic studies on 420 discrete samples from the top ∼200 m of the synthetic records of Holes U1505C and U1505D. Rock magnetic analyses indicate that low‐coercivity pseudosingle domain magnetite dominates as the primary ferromagnetic mineral of Site U1505. The magnetostratigraphic age model was constructed by correlating the interpreted polarity sequence with the Geomagnetic Polarity Time Scale 2020 with the constraints of the biostratigraphic data and the distribution probability of the age of each polarity zone provided by a Dynamic Time Warping algorithm. The Milankovitch cycles of the short eccentricity, obliquity, and precession cycles were identified in the magnetic susceptibility (MS) and natural gamma radiation (NGR) series based on paleomagnetic results. We established an ∼9 Myr high‐resolution astronomical time scale by tuning the MS and NGR records to the global oxygen isotope curves, the obliquity, and the eccentricity curves of the La2004 astronomical solution. Our new age model reveals detailed sedimentation rate variations and a ∼500 kyr hiatus across the Brunhes‐Matuyama boundary related to local tectonic activity. These results lay the foundation for understanding the paleoceanography and paleoclimate evolution of the SCS.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43716123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information 问题信息
IF 3.5 2区 地球科学
Paleoceanography and Paleoclimatology Pub Date : 2023-01-26 DOI: 10.1002/palo.21172
{"title":"Issue Information","authors":"","doi":"10.1002/palo.21172","DOIUrl":"https://doi.org/10.1002/palo.21172","url":null,"abstract":"No abstract is available for this article.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46248478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
North Atlantic Drift Sediments Constrain Eocene Tidal Dissipation and the Evolution of the Earth‐Moon System 北大西洋漂移沉积物制约始新世潮汐耗散和地月系统的演化
IF 3.5 2区 地球科学
Paleoceanography and Paleoclimatology Pub Date : 2023-01-25 DOI: 10.1029/2022PA004555
D. De Vleeschouwer, D. Penman, S. D’haenens, Fei Wu, T. Westerhold, M. Vahlenkamp, C. Cappelli, C. Agnini, W. E. Kordesch, D. J. King, Robin van der Ploeg, H. Pälike, S. Turner, P. Wilson, R. Norris, J. Zachos, S. Bohaty, P. Hull
{"title":"North Atlantic Drift Sediments Constrain Eocene Tidal Dissipation and the Evolution of the Earth‐Moon System","authors":"D. De Vleeschouwer, D. Penman, S. D’haenens, Fei Wu, T. Westerhold, M. Vahlenkamp, C. Cappelli, C. Agnini, W. E. Kordesch, D. J. King, Robin van der Ploeg, H. Pälike, S. Turner, P. Wilson, R. Norris, J. Zachos, S. Bohaty, P. Hull","doi":"10.1029/2022PA004555","DOIUrl":"https://doi.org/10.1029/2022PA004555","url":null,"abstract":"Cyclostratigraphy and astrochronology are now at the forefront of geologic timekeeping. While this technique heavily relies on the accuracy of astronomical calculations, solar system chaos limits how far back astronomical calculations can be performed with confidence. High‐resolution paleoclimate records with Milankovitch imprints now allow reversing the traditional cyclostratigraphic approach: Middle Eocene drift sediments from Newfoundland Ridge are well‐suited for this purpose, due to high sedimentation rates and distinct lithological cycles. Per contra, the stratigraphies of Integrated Ocean Drilling Program Sites U1408–U1410 are highly complex with several hiatuses. Here, we built a two‐site composite and constructed a conservative age‐depth model to provide a reliable chronology for this rhythmic, highly resolved (<1 kyr) sedimentary archive. Astronomical components (g‐terms and precession constant) are extracted from proxy time‐series using two different techniques, producing consistent results. We find astronomical frequencies up to 4% lower than reported in astronomical solution La04. This solution, however, was smoothed over 20‐Myr intervals, and our results therefore provide constraints on g‐term variability on shorter, million‐year timescales. We also report first evidence that the g4–g3 “grand eccentricity cycle” may have had a 1.2‐Myr period around 41 Ma, contrary to its 2.4‐Myr periodicity today. Our median precession constant estimate (51.28 ± 0.56″/year) confirms earlier indicators of a relatively low rate of tidal dissipation in the Paleogene. Newfoundland Ridge drift sediments thus enable a reliable reconstruction of astronomical components at the limit of validity of current astronomical calculations, extracted from geologic data, providing a new target for the next generation of astronomical calculations.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43506667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信