Atmospheric CO2 Concentration Based on Boron Isotopes Versus Simulations of the Global Carbon Cycle During the Plio‐Pleistocene

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
P. Köhler
{"title":"Atmospheric CO2 Concentration Based on Boron Isotopes Versus Simulations of the Global Carbon Cycle During the Plio‐Pleistocene","authors":"P. Köhler","doi":"10.1029/2022PA004439","DOIUrl":null,"url":null,"abstract":"Atmospheric carbon dioxide concentrations (pCO2) beyond ice core records have been reconstructed from δ11B derived from planktic foraminifera found in equatorial sediment cores. Here, I applied a carbon cycle model over the Plio‐Pleistocene to evaluate the assumptions leading to these numbers. During glacials times, simulated atmospheric pCO2 was unequilibrated with pCO2 in the equatorial surface ocean by up to 35 ppm while the δ11B‐based approaches assume unchanged (quasi)equilibrium between both. In the Pliocene, δ11B‐based estimates of surface ocean pH are lower in the Pacific than in the Atlantic resulting in higher calculated pCO2. This offset in pH between ocean basins is not supported by models. To calculate pCO2 in surface waters out of the δ11B‐based pH some assumptions on either total alkalinity or dissolved inorganic carbon are necessary. However, the assumed values of these under‐constrained variables were according to my results partly inconsistent with chemically possible combinations within the marine carbonate system. The model results show glacial/interglacial variability in total alkalinity of the order of 100 μmol/kg, which is rarely applied to proxy reconstructions. Simulated atmospheric pCO2 is tightly (r2 > 0.9) related to equatorial surface‐ocean pH, which can be used for consistency checks. Long‐term trends in volcanic CO2 outgassing and the strength of the continental weathering fluxes are still unconstrained, allowing for a wide range of possible atmospheric pCO2 across the Plio‐Pleistocene. Nevertheless, this carbon cycle analysis suggests that reported atmospheric pCO2 above 500 ppm in the Pliocene might, for various reasons, need to be revised to smaller numbers.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022PA004439","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric carbon dioxide concentrations (pCO2) beyond ice core records have been reconstructed from δ11B derived from planktic foraminifera found in equatorial sediment cores. Here, I applied a carbon cycle model over the Plio‐Pleistocene to evaluate the assumptions leading to these numbers. During glacials times, simulated atmospheric pCO2 was unequilibrated with pCO2 in the equatorial surface ocean by up to 35 ppm while the δ11B‐based approaches assume unchanged (quasi)equilibrium between both. In the Pliocene, δ11B‐based estimates of surface ocean pH are lower in the Pacific than in the Atlantic resulting in higher calculated pCO2. This offset in pH between ocean basins is not supported by models. To calculate pCO2 in surface waters out of the δ11B‐based pH some assumptions on either total alkalinity or dissolved inorganic carbon are necessary. However, the assumed values of these under‐constrained variables were according to my results partly inconsistent with chemically possible combinations within the marine carbonate system. The model results show glacial/interglacial variability in total alkalinity of the order of 100 μmol/kg, which is rarely applied to proxy reconstructions. Simulated atmospheric pCO2 is tightly (r2 > 0.9) related to equatorial surface‐ocean pH, which can be used for consistency checks. Long‐term trends in volcanic CO2 outgassing and the strength of the continental weathering fluxes are still unconstrained, allowing for a wide range of possible atmospheric pCO2 across the Plio‐Pleistocene. Nevertheless, this carbon cycle analysis suggests that reported atmospheric pCO2 above 500 ppm in the Pliocene might, for various reasons, need to be revised to smaller numbers.
基于硼同位素的大气CO2浓度与上新世全球碳循环模拟
根据赤道沉积物岩心中浮游有孔虫的δ11B,重建了冰芯以外的大气二氧化碳浓度(pCO2)。在这里,我应用了上新世-更新世的碳循环模型来评估导致这些数字的假设。在冰期,模拟的大气二氧化碳分压与赤道表层海洋的二氧化碳分压不平衡高达35 ppm,而基于δ11B的方法假设两者之间保持不变(准)平衡。在上新世,基于δ11B‐的太平洋表面海洋pH值估计值比大西洋低,导致计算出的二氧化碳分压更高。模式不支持海洋盆地之间pH值的这种抵消。为了计算以δ11B为基础的pH值以外的地表水中的pCO2,必须对总碱度或溶解的无机碳进行一些假设。然而,根据我的结果,这些受约束变量的假设值与海相碳酸盐体系中可能的化学组合部分不一致。模型结果显示,总碱度的冰期/间冰期变化约为100 μmol/kg,这种变化很少用于替代重建。模拟的大气二氧化碳分压与赤道表面-海洋pH值密切相关(r2 > 0.9),可用于一致性检查。火山释放二氧化碳的长期趋势和大陆风化通量的强度仍然不受限制,这使得在上新世-更新世期间可能的大气二氧化碳分压范围很广。然而,这项碳循环分析表明,由于各种原因,上新世报告的大气co2浓度高于500ppm可能需要修改为更小的数字。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Paleoceanography and Paleoclimatology
Paleoceanography and Paleoclimatology Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.20
自引率
11.40%
发文量
107
期刊介绍: Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信