Devika Varma, K. Hättig, M. V. D. van der Meer, G. Reichart, Stefan Schouten
{"title":"Constraining Water Depth Influence on Organic Paleotemperature Proxies Using Sedimentary Archives","authors":"Devika Varma, K. Hättig, M. V. D. van der Meer, G. Reichart, Stefan Schouten","doi":"10.1029/2022PA004533","DOIUrl":"https://doi.org/10.1029/2022PA004533","url":null,"abstract":"The TEX86 paleothermometer has been extensively used to reconstruct past sea water temperatures, but it remains unclear which export depths the proxy represents. Here we used a novel approach to better constrain the proxy recording depths by investigating paleotemperature proxies (TEX86, U37K′ ${mathrm{U}}_{37}^{{mathrm{K}}^{prime }}$ , RI−OH and RI−OH′) from two pairs of proximal (<12 km apart) cores from Chilean and Angola margins, respectively. These cores are from steep continental slopes and lower shelves, which leads to a substantial difference in water depth between them despite being closely located. Surprisingly, the deep and the shallow U37K′ ${mathrm{U}}_{37}^{{mathrm{K}}^{prime }}$ records at the Chilean margin show dissimilarities, in contrast to the similar records from the Angola margin, which may be due to post‐depositional alteration at the former sites. In contrast, the TEX86 records were statistically indistinguishable between the sites at both the locations, even though the GDGT [2]/[3] ratio suggests GDGTs derived from potentially different archaeal communities residing at different depths. A short‐lived difference between the TEX86 records is observed during the last glacial period at the Angola margin, possibly due to a contribution of Antarctic Intermediate Waters to the deep site. Modelling suggests that the TEX86 source signal at our core sites reaches its peak abundance at water depths shallower than 350 m. The RI−OH and RI−OH′ records show similar variability as the TEX86 records, although regional differences in their absolute temperature estimates exist. Our approach using proximal sediment cores at steep slopes appears useful to constrain the export depth of organic proxy signals for paleo‐reconstructions.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48538351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"North American Hydroclimate During Past Warms States: A Proxy Compilation‐Model Comparison for the Last Interglacial and the Mid‐Holocene","authors":"C. D. de Wet, D. Ibarra, B. Belanger, J. Oster","doi":"10.1029/2022PA004528","DOIUrl":"https://doi.org/10.1029/2022PA004528","url":null,"abstract":"During the mid‐Holocene (MH: ∼6,000 years Before Present) and Last Interglacial LIG (LIG: ∼129,000–116,000 years Before Present) differences in the seasonal and latitudinal distribution of insolation drove Northern Hemisphere high‐latitude warming comparable to that projected for the end of the 21st century in low emissions scenarios. Paleoclimate proxy records point to distinct but regionally variable hydroclimatic changes during these past warm intervals. However, model simulations have generally disagreed on North American regional moisture patterns during the MH and LIG. To investigate how closely the latest generation of models associated with the Paleoclimate Model Intercomparison Project (PMIP4) reproduces proxy‐inferred moisture patterns during recent warm periods, we compare hydroclimate output from 17 PMIP4 models with newly updated compilations of moisture‐sensitive North American proxy records during the MH and LIG. Agreement is lower for the MH, with models producing wet anomalies across the western United States (US) where most proxies indicate increased aridity relative to the preindustrial period. The models that agree most closely with the LIG proxy compilation display relative wetness in the eastern US and Alaska, and dryness in the northwest and central US. An assessment of atmospheric dynamics using an ensemble of the three LIG simulations that best agree with the proxies suggests that weaker winter North Pacific pressure gradients and steeper summer North Pacific and Atlantic gradients drive LIG precipitation patterns. Our updated compilations and proxy‐model comparisons offer a tool for benchmarking climate models and their performance in simulating climate states that are warmer than present.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42641412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Barragán-Montilla, S. Mulitza, H. Johnstone, H. Pälike
{"title":"Stagnant North Atlantic Deep Water Heat Uptake With Reduced Atlantic Meridional Overturning Circulation During the Last Deglaciation","authors":"S. Barragán-Montilla, S. Mulitza, H. Johnstone, H. Pälike","doi":"10.1029/2022PA004575","DOIUrl":"https://doi.org/10.1029/2022PA004575","url":null,"abstract":"Atlantic Meridional Overturning Circulation (AMOC) plays a major role in the climate system by modulating the depth and rate of oceanic heat storage. Some climate simulations suggest that reduced AMOC decreases bottom water ventilation and that the heat absorbed by the ocean starts to mix downwards, warming Atlantic intermediate waters. This has been corroborated for the western North Atlantic by benthic foraminifera geochemical records from periods of reduced AMOC during the last deglaciation. However, the deep‐water response remains poorly constrained, and the lack of direct paleotemperature reconstructions limits our understanding about the effects of reduced circulation on ocean heat uptake. We present a new reconstruction of bottom water temperatures from core GeoB9508‐5 (2,384 m water depth, 15°29.90°N/17°56.88°W) off the northwestern African Margin. Our paleotemperature record, based on Uvigerina spp. Mg/Ca, shows two episodes of intense transient deep water warming in times of decreasing overturning circulation, followed by long periods of heat uptake stagnation. First, during AMOC slowdown in the Heinrich stadial 1, when paleotemperatures of ∼2°C persisted for ∼5.4 Kyr coincident with the weakest stage of AMOC; and second in the Younger Dryas, when bottom water temperatures >4°C lasted ∼2.5 Kyr during a less intense AMOC decline. This suggests a stagnation of deep‐water heat uptake in the deep NE Atlantic possibly linked to a reduced downward advection of heat during times of a reduced AMOC, supporting the hypothesis that AMOC strength sets the depth of oceanic heat storage in the North Atlantic.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47358704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Marcks, T. P. Santos, D. V. O. Lessa, A. Cartagena-Sierra, M. A. Berke, A. Starr, I. R. Hall, R. P. Kelly, R. S. Robinson
{"title":"Glacial Southern Ocean Expansion Recorded in Foraminifera‐Bound Nitrogen Isotopes From the Agulhas Plateau During the Mid‐Pleistocene Transition","authors":"B. Marcks, T. P. Santos, D. V. O. Lessa, A. Cartagena-Sierra, M. A. Berke, A. Starr, I. R. Hall, R. P. Kelly, R. S. Robinson","doi":"10.1029/2022PA004482","DOIUrl":"https://doi.org/10.1029/2022PA004482","url":null,"abstract":"The emergence of 100‐Kyr glacial cycles (The Mid‐Pleistocene Transition [MPT]) is attributed in part to slower global overturning circulation and iron stimulation of biological carbon drawdown in the Southern Ocean. We present foraminifera‐bound nitrogen isotope values and polar planktic foraminifera abundances from the Agulhas Plateau that show that increases in biogenic sediment accumulation coincide with northward migrations of the Subtropical Frontal Zone (STFZ) and elevated foraminifera‐bound nitrogen isotope values during MPT glacial episodes. The nitrogen isotope values of two planktic foraminifera species, Globigerina bulloides and Globorotalia inflata show remarkable coherence amongst the sea surface temperature gradient between the STFZ and SAZ, and polar foraminifera abundances, indicating a strong relationship between nitrogen isotope dynamics above the Agulhas Plateau and migrations of the STFZ. Northward migration of the STFZ may have been essential to prolonging glacial intervals by increasing deep ocean carbon storage via a northward shift of the South Westerly Winds and a reduction in upwelling, delivery of fresher surface waters into the upper limb of global overturning circulation, or inhibiting heat and salt delivery to the Atlantic as Agulhas Leakage.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49340007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring Spatiotemporal Paleoenvironmental and Paleoceanographic Changes on the Continental Shelf Using Authigenic Greigite: A Case Study From the East China Sea","authors":"Jianxing Liu, Taoyu Xu, Qiang Zhang, Xiaoxiao Yu, Yonghua Wu, Qingsong Liu, Xuefa Shi","doi":"10.1029/2023PA004621","DOIUrl":"https://doi.org/10.1029/2023PA004621","url":null,"abstract":"The lack of suitable indicators of changes in such as sea‐level and circulation has been a major limit to paleoenvironmental and paleoceanographic investigations in continental shelf regions. This paper presents an environmental magnetic study by comparing two late‐Quaternary sediment cores (DH02 and DH03) from the outer shelf of the East China Sea (ECS). Late and early Marine Isotope Stage (MIS) 3 sediments were deposited in a prodelta under cold coastal currents and an open‐shelf with the Taiwan Warm Current and upwelling. The dominant iron‐bearing minerals of the late and early MIS 3 sediments are authigenic greigite (Fe3S4) and pyrite (FeS2), respectively, which were assumed to be formed nearly syndepositionally. The overlying sediments, however, are magnetically dominated by detrital magnetite. This pattern corresponds well to the temporal changes in sea‐level over this period. The widespread occurrence of greigite in the late MIS 3 sediments can also be used for future stratigraphic division and correlation in the ECS. Additionally, compared to microfossil assemblages, rock magnetic parameters based on greigite may be more sensitive to environmental changes on continental shelves. Furthermore, the inter‐borehole spatial comparisons imply not only a sedimentary hiatus/erosion of at least 30‐m thickness in core DH02, most probably during the Last Glacial Maximum, but also that core DH02 was in a more reductive environment than core DH03 during late MIS 3. The findings highlight the potential of authigenic greigite as an indicator of spatiotemporal changes in paleoenvironmental and paleoceanographic conditions on the continental shelf at orbital or even suborbital timescales.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45279971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Cramwinckel, N. Burls, A. A. Fahad, Scott Knapp, C. K. West, T. Reichgelt, D. Greenwood, W. Chan, Y. Donnadieu, D. Hutchinson, A. D. de Boer, J. Ladant, P. Morozova, I. Niezgodzki, G. Knorr, S. Steinig, Zhongshi Zhang, Jiang Zhu, R. Feng, D. Lunt, A. Abe‐Ouchi, G. Inglis
{"title":"Global and Zonal‐Mean Hydrological Response to Early Eocene Warmth","authors":"M. Cramwinckel, N. Burls, A. A. Fahad, Scott Knapp, C. K. West, T. Reichgelt, D. Greenwood, W. Chan, Y. Donnadieu, D. Hutchinson, A. D. de Boer, J. Ladant, P. Morozova, I. Niezgodzki, G. Knorr, S. Steinig, Zhongshi Zhang, Jiang Zhu, R. Feng, D. Lunt, A. Abe‐Ouchi, G. Inglis","doi":"10.1029/2022PA004542","DOIUrl":"https://doi.org/10.1029/2022PA004542","url":null,"abstract":"Earth's hydrological cycle is expected to intensify in response to global warming, with a “wet‐gets‐wetter, dry‐gets‐drier” response anticipated over the ocean. Subtropical regions (∼15°–30°N/S) are predicted to become drier, yet proxy evidence from past warm climates suggests these regions may be characterized by wetter conditions. Here we use an integrated data‐modeling approach to reconstruct global and zonal‐mean rainfall patterns during the early Eocene (∼56–48 million years ago). The Deep‐Time Model Intercomparison Project (DeepMIP) model ensemble indicates that the mid‐ (30°–60°N/S) and high‐latitudes (>60°N/S) are characterized by a thermodynamically dominated hydrological response to warming and overall wetter conditions. The tropical band (0°–15°N/S) is also characterized by wetter conditions, with several DeepMIP models simulating narrowing of the Inter‐Tropical Convergence Zone. However, the latter is not evident from the proxy data. The subtropics are characterized by negative precipitation‐evaporation anomalies (i.e., drier conditions) in the DeepMIP models, but there is surprisingly large inter‐model variability in mean annual precipitation (MAP). Intriguingly, we find that models with weaker meridional temperature gradients (e.g., CESM, GFDL) are characterized by a reduction in subtropical moisture divergence, leading to an increase in MAP. These model simulations agree more closely with our new proxy‐derived precipitation reconstructions and other key climate metrics and imply that the early Eocene was characterized by reduced subtropical moisture divergence. If the meridional temperature gradient was even weaker than suggested by those DeepMIP models, circulation‐induced changes may have outcompeted thermodynamic changes, leading to wetter subtropics. This highlights the importance of accurately reconstructing zonal temperature gradients when reconstructing past rainfall patterns.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46002849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reconstructing the Oxygen Depth Profile in the Arabian Sea During the Last Glacial Period","authors":"Wanyi Lu, K. Costa, D. Oppo","doi":"10.1029/2023PA004632","DOIUrl":"https://doi.org/10.1029/2023PA004632","url":null,"abstract":"Reconstructing the strength and depth boundary of oxygen minimum zones (OMZs) in the glacial ocean advances our understanding of how OMZs respond to climate changes. While many efforts have inferred better oxygenation of the glacial Arabian Sea OMZ from qualitative indices, oxygenation and vertical extent of the glacial OMZ is not well quantified. Here we present glacial‐Holocene oxygen reconstructions in a depth transect of Arabian Sea cores ranging from 600 to 3,650 m water depths. We estimate glacial oxygen concentrations using benthic foraminiferal surface porosity and benthic carbon isotope gradient reconstructions. Compared to the modern Arabian Sea, glacial oxygen concentrations were approximately 10–15 μmol/kg higher in the shallow OMZ (<1,000 m), and 5–80 μmol/kg lower at greater depths (1,500–3,650 m). Our results suggest that the OMZ in the glacial Arabian Sea was slightly better oxygenated but remained in the upper 1,000 m. We propose that the small increase in oxygenation of the Arabian Sea OMZ during the last glacial period was due to weaker upper ocean stratification induced by stronger winter monsoon winds coupled with an increase in oxygen solubility due to lower temperatures, counteracting the effects of more oxygen consumption resulting from higher primary productivity. Large‐scale changes in ocean circulation may have also contributed to better ventilation of the glacial Arabian Sea OMZ.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47765512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chris Hancock, N. McKay, M. Erb, D. Kaufman, Cody R. Routson, R. Ivanović, L. Gregoire, P. Valdes
{"title":"Global Synthesis of Regional Holocene Hydroclimate Variability Using Proxy and Model Data","authors":"Chris Hancock, N. McKay, M. Erb, D. Kaufman, Cody R. Routson, R. Ivanović, L. Gregoire, P. Valdes","doi":"10.1029/2022PA004597","DOIUrl":"https://doi.org/10.1029/2022PA004597","url":null,"abstract":"Substantial changes in terrestrial hydroclimate during the Holocene are recorded in geological archives and simulated by computer models. To identify spatial and temporal patterns during the past 12 ka, proxy records sensitive to changing precipitation and effective moisture (precipitation minus evaporation) were compiled from across the globe (n = 813). Proxy composite timeseries were computed for 30 of the IPCC AR6 regions and compared to two full‐Holocene transient model simulations (TraCE‐21ka and HadCM3) and twelve mid‐Holocene CMIP6 simulations. We find that throughout Northern Hemisphere monsoon regions, proxy and model simulations indicate wetter‐than‐modern conditions during the early and mid‐Holocene while Southern Hemisphere monsoon regions were drier. This insolation driven trend toward modern values began approximately 6,000 years ago, and the clear agreement among proxy records and models may reflect the large magnitude of precipitation change and consistent atmospheric circulation forcing mechanism for these regions. In the midlatitudes, the pattern of change is less certain. Generally, proxy composites show a wetting trend throughout the Holocene for the northern midlatitudes, possibly due to strengthening westerlies from an increasing latitudinal temperature gradient. However, simulations indicate that the magnitude of change was relatively low, and for portions of North America, there is a proxy‐model disagreement. At high latitudes, hydroclimate is positively correlated with temperature in both proxies and models, consistent with projected wetting as temperatures rise. Overall, this large proxy database reveals a coherent pattern of hydroclimate variability despite the challenges associated with reconstructing hydroclimate fields.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49209634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Hsieh, R. Vaucher, L. Löwemark, S. Dashtgard, C. Horng, A. Lin, C. Zeeden
{"title":"Influence of a Rapidly Uplifting Orogen on the Preservation of Climate Oscillations","authors":"A. Hsieh, R. Vaucher, L. Löwemark, S. Dashtgard, C. Horng, A. Lin, C. Zeeden","doi":"10.1029/2022PA004586","DOIUrl":"https://doi.org/10.1029/2022PA004586","url":null,"abstract":"Climate oscillations preserved in sedimentary archives tend to decrease in resolution further back in Earth's history. High‐frequency climate cycles (e.g., ∼20‐Kyr precession cycles) are especially prone to poor preservation due to sediment reworking. Recent studies have shown, however, that given sufficient basin accommodation space and sedimentation rate, shallow‐marine paleoclimate archives record precession‐driven hydroclimate change in mid‐low latitude regions. Our study evaluates how the evolution of a rapidly uplifting orogen influences the recording of astronomical climate forcing in shallow‐marine sedimentary strata in the Taiwan Western Foreland Basin (WFB). Time‐series analysis of gamma‐ray records through the late Miocene–Pliocene Kueichulin Formation shows that during early stages of Taiwan orogenesis (before 5.4 Ma), preservation of precession‐driven East Asian Summer Monsoon variability is low despite increasing monsoon intensities between 8 and 3 Ma. The Taiwan Strait had not formed, and the southeast margin of Eurasia was open to the Pacific Ocean. Consequently, depositional environments in the WFB were susceptible to reworking by large waves, resulting in the obscuration of higher‐frequency precession cycles. From 5.4 to 4.92 Ma, during early stages of emergence of Taiwan, basin subsidence increased while sedimentation rates remained low, resulting in poor preservation of orbital oscillations. After 4.92 Ma and up to 3.15 Ma, Taiwan became a major sediment source to the WFB, and sheltered the WFB from erosive waves with the development of Taiwan Strait. The elevated sediment influx, increased basin accommodation as the WFB developed, and formation of a semi‐sheltered strait, resulted in enhanced preservation of precession‐driven East Asian Summer Monsoon variability.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43295174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Chadwick, L. Sime, C. Allen, Maria-Vittoria Guarino
{"title":"Model‐Data Comparison of Antarctic Winter Sea‐Ice Extent and Southern Ocean Sea‐Surface Temperatures During Marine Isotope Stage 5e","authors":"M. Chadwick, L. Sime, C. Allen, Maria-Vittoria Guarino","doi":"10.1029/2022PA004600","DOIUrl":"https://doi.org/10.1029/2022PA004600","url":null,"abstract":"Marine Isotope Stage (MIS) 5e (130–116 ka) represents a “laboratory” for evaluating climate model performance under warmer‐than‐present conditions. Climate model simulations for MIS 5e have previously failed to produce Southern Ocean (SO) sea‐surface temperatures (SSTs) and sea‐ice extent reconstructed from marine sediment core proxy records. Here we compare state of the art HadGEM3 and HadCM3 simulations of Peak MIS 5e SO summer SSTs and September sea‐ice concentrations with the latest marine sediment core proxy data. The model outputs and proxy records show the least consistency in the regions located near the present‐day SO gyre boundaries, implying the possibility that model simulations are currently unable to fully realize changes in gyre extent and position during MIS 5e. Including Heinrich 11 meltwater forcing in Peak MIS 5e climate simulations improves the likeness to proxy data but it is clear that longer (3–4 ka) run times are required to fully test the consistency between models and data.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41966205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}