不同大气CO2浓度对中新世大尺度温度特征的影响

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Akil Hossain, G. Knorr, W. Jokat, G. Lohmann, K. Hochmuth, P. Gierz, K. Gohl, C. Stepanek
{"title":"不同大气CO2浓度对中新世大尺度温度特征的影响","authors":"Akil Hossain, G. Knorr, W. Jokat, G. Lohmann, K. Hochmuth, P. Gierz, K. Gohl, C. Stepanek","doi":"10.1029/2022PA004438","DOIUrl":null,"url":null,"abstract":"Based on inferences from proxy records the Miocene (23.03–5.33 Ma) was a time of amplified polar warmth compared to today. However, it remains a challenge to simulate a warm Miocene climate and pronounced polar warmth at reconstructed Miocene CO2 concentrations. Using a state‐of‐the‐art Earth‐System‐Model, we implement a high‐resolution paleobathymetry and simulate Miocene climate at different atmospheric CO2 concentrations. We estimate global mean surface warming of +3.1°C relative to the preindustrial at a CO2 level of 450 ppm. An increase of atmospheric CO2 from 280 to 450 ppm provides an individual warming of ∼1.4°C, which is as strong as all other Miocene forcing contributions combined. Substantial changes in surface albedo are vital to explain Miocene surface warming. Simulated surface temperatures fit well with proxy reconstructions at low‐ to mid‐latitudes. The high latitude cooling bias becomes less pronounced for higher atmospheric CO2 concentrations. At such CO2 levels simulated Miocene climate shows a reduced polar amplification, linked to a breakdown of seasonality in the Arctic Ocean. A pronounced warming in boreal fall is detected for a CO2 increase from 280 to 450 ppm, in comparison to weaker warming for CO2 changes from 450 to 720 ppm. Moreover, a pronounced warming in winter is detected for a CO2 increase from 450 to 720 ppm, in contrast to a moderate summer temperature increase, which is accompanied by a strong sea‐ice concentration decline that promotes cloud formation in summer via enhanced moisture availability. As a consequence planetary albedo increases and dampens the temperature response to CO2 forcing at a warmer Miocene background climate.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Impact of Different Atmospheric CO2 Concentrations on Large Scale Miocene Temperature Signatures\",\"authors\":\"Akil Hossain, G. Knorr, W. Jokat, G. Lohmann, K. Hochmuth, P. Gierz, K. Gohl, C. Stepanek\",\"doi\":\"10.1029/2022PA004438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on inferences from proxy records the Miocene (23.03–5.33 Ma) was a time of amplified polar warmth compared to today. However, it remains a challenge to simulate a warm Miocene climate and pronounced polar warmth at reconstructed Miocene CO2 concentrations. Using a state‐of‐the‐art Earth‐System‐Model, we implement a high‐resolution paleobathymetry and simulate Miocene climate at different atmospheric CO2 concentrations. We estimate global mean surface warming of +3.1°C relative to the preindustrial at a CO2 level of 450 ppm. An increase of atmospheric CO2 from 280 to 450 ppm provides an individual warming of ∼1.4°C, which is as strong as all other Miocene forcing contributions combined. Substantial changes in surface albedo are vital to explain Miocene surface warming. Simulated surface temperatures fit well with proxy reconstructions at low‐ to mid‐latitudes. The high latitude cooling bias becomes less pronounced for higher atmospheric CO2 concentrations. At such CO2 levels simulated Miocene climate shows a reduced polar amplification, linked to a breakdown of seasonality in the Arctic Ocean. A pronounced warming in boreal fall is detected for a CO2 increase from 280 to 450 ppm, in comparison to weaker warming for CO2 changes from 450 to 720 ppm. Moreover, a pronounced warming in winter is detected for a CO2 increase from 450 to 720 ppm, in contrast to a moderate summer temperature increase, which is accompanied by a strong sea‐ice concentration decline that promotes cloud formation in summer via enhanced moisture availability. As a consequence planetary albedo increases and dampens the temperature response to CO2 forcing at a warmer Miocene background climate.\",\"PeriodicalId\":54239,\"journal\":{\"name\":\"Paleoceanography and Paleoclimatology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography and Paleoclimatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2022PA004438\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022PA004438","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

根据代理记录的推断,与今天相比,中新世(23.03–5.33 Ma)是极地变暖加剧的时期。然而,在重建的中新世二氧化碳浓度下模拟温暖的中新统气候和明显的极地温暖仍然是一个挑战。使用最先进的地球系统模型,我们实现了高分辨率的古水深测量,并模拟了不同大气二氧化碳浓度下的中新世气候。我们估计,在450 ppm的二氧化碳水平下,相对于工业化前,全球平均地表变暖为+3.1°C。大气中的二氧化碳从280 ppm增加到450 ppm,会产生约1.4°C的单独变暖,这与所有其他中新世强迫因素的总和一样强烈。地表反照率的实质性变化对于解释中新世地表变暖至关重要。模拟的地表温度与低纬度到中纬度的代理重建非常吻合。大气中二氧化碳浓度越高,高纬度冷却偏差就越不明显。在这样的二氧化碳水平下,模拟的中新世气候显示出极地放大减少,这与北冰洋季节性的崩溃有关。与从450 ppm到720 ppm的二氧化碳变化较弱的变暖相比,从280 ppm到450 ppm的二氧化碳增加检测到北方秋季的明显变暖。此外,冬季二氧化碳浓度从450 ppm增加到720 ppm,这与夏季温和的温度升高形成了鲜明对比,夏季温和的气温升高伴随着海冰浓度的强烈下降,这通过提高水分利用率促进了夏季的云层形成。因此,在中新世温暖的背景气候下,行星反照率增加并减弱了对二氧化碳强迫的温度响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Impact of Different Atmospheric CO2 Concentrations on Large Scale Miocene Temperature Signatures
Based on inferences from proxy records the Miocene (23.03–5.33 Ma) was a time of amplified polar warmth compared to today. However, it remains a challenge to simulate a warm Miocene climate and pronounced polar warmth at reconstructed Miocene CO2 concentrations. Using a state‐of‐the‐art Earth‐System‐Model, we implement a high‐resolution paleobathymetry and simulate Miocene climate at different atmospheric CO2 concentrations. We estimate global mean surface warming of +3.1°C relative to the preindustrial at a CO2 level of 450 ppm. An increase of atmospheric CO2 from 280 to 450 ppm provides an individual warming of ∼1.4°C, which is as strong as all other Miocene forcing contributions combined. Substantial changes in surface albedo are vital to explain Miocene surface warming. Simulated surface temperatures fit well with proxy reconstructions at low‐ to mid‐latitudes. The high latitude cooling bias becomes less pronounced for higher atmospheric CO2 concentrations. At such CO2 levels simulated Miocene climate shows a reduced polar amplification, linked to a breakdown of seasonality in the Arctic Ocean. A pronounced warming in boreal fall is detected for a CO2 increase from 280 to 450 ppm, in comparison to weaker warming for CO2 changes from 450 to 720 ppm. Moreover, a pronounced warming in winter is detected for a CO2 increase from 450 to 720 ppm, in contrast to a moderate summer temperature increase, which is accompanied by a strong sea‐ice concentration decline that promotes cloud formation in summer via enhanced moisture availability. As a consequence planetary albedo increases and dampens the temperature response to CO2 forcing at a warmer Miocene background climate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Paleoceanography and Paleoclimatology
Paleoceanography and Paleoclimatology Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.20
自引率
11.40%
发文量
107
期刊介绍: Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信