Journal of Mathematics最新文献

筛选
英文 中文
Thermal Analysis of a Casson Boundary Layer Flow over a Penetrable Stretching Porous Wedge 可穿透拉伸多孔楔上卡松边界层流的热分析
IF 1.4 4区 数学
Journal of Mathematics Pub Date : 2024-03-18 DOI: 10.1155/2024/1666959
Dur-e-Shehwar Sagheer, Mohammad Alqudah, Nawal A. Alshehri, M. Sabeel Khan, M. Asif Memon, R. Shehzad, Amsalu Fenta
{"title":"Thermal Analysis of a Casson Boundary Layer Flow over a Penetrable Stretching Porous Wedge","authors":"Dur-e-Shehwar Sagheer, Mohammad Alqudah, Nawal A. Alshehri, M. Sabeel Khan, M. Asif Memon, R. Shehzad, Amsalu Fenta","doi":"10.1155/2024/1666959","DOIUrl":"https://doi.org/10.1155/2024/1666959","url":null,"abstract":"This work aims to analyze the Casson thermal boundary layer flow over an expanding wedge in a porous medium with convective boundary conditions and ohmic heating. Moreover, the effects of porosity and viscous dissipation are studied in detail and included in the analysis. The importance of this study is due to its applications in biomedical engineering where the analysis of behavior of non-Newtonian blood flow in arteries and veins is desired. Within the context of blood flow, it is also applicable to many other fields, for instance, radiative therapy, MHD generators, soil machines, melt-spinning, and insulation processes. The modeled problem is a set of PDEs, which is nondimensionalized to derive a nonlinear boundary value problem (BVP). The obtained BVP is solved using the shooting technique, endowed with the order four Runge-Kutta and Newton methods. The impact of different parameters on the momentum and temperature fields is investigated along with two important parameters of physical significance, i.e., the Nusselt number and the surface drag force. Results are validated, and an excellent agreement is seen for the parameters of interest using MATLAB built-in function bvp4c. A significant finding is that by increasing the Casson liquid parameter, the velocity decreases as the wedge expands quicker than the free stream velocity at <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 19.414 8.8423\" width=\"19.414pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.783,0)\"></path></g></svg><span></span><span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"22.9961838 -8.6359 6.422 8.8423\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.046,0)\"></path></g></svg>.</span></span> However, the velocity increases for the case when <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 19.414 8.8423\" width=\"19.414pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.783,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"22.9961838 -8.6359 15.66 8.8423\" width=\"15.66pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.046,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,29.286,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.25,0)\"></path></g></svg>.</span></span> A decrease in the Darcy number increases the temperature profile. Furthermore, the convective parameter accelerated the heat transmissi","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"20 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140146456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Second-Order Finite-Difference Method for Derivative-Free Optimization 无衍生优化的二阶有限差分法
IF 1.4 4区 数学
Journal of Mathematics Pub Date : 2024-03-15 DOI: 10.1155/2024/1947996
Qian Chen, Peng Wang, Detong Zhu
{"title":"A Second-Order Finite-Difference Method for Derivative-Free Optimization","authors":"Qian Chen, Peng Wang, Detong Zhu","doi":"10.1155/2024/1947996","DOIUrl":"https://doi.org/10.1155/2024/1947996","url":null,"abstract":"In this paper, a second-order finite-difference method is proposed for finding the second-order stationary point of derivative-free nonconvex unconstrained optimization problems. The forward-difference or the central-difference technique is used to approximate the gradient and Hessian matrix of objective function, respectively. The traditional trust-region framework is used, and we minimize the approximation trust region subproblem to obtain the search direction. The global convergence of the algorithm is given without the fully quadratic assumption. Numerical results show the effectiveness of the algorithm using the forward-difference and central-difference approximations.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"39 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140146382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of Nonlinear Second-Order Differential Inclusion Driven by a Laplacian Operator Using the Lower and Upper Solutions Method 用上下解法研究拉普拉斯算子驱动的非线性二阶微分包容
IF 1.4 4区 数学
Journal of Mathematics Pub Date : 2024-03-14 DOI: 10.1155/2024/2258546
Droh Arsène Béhi, Assohoun Adjé, Konan Charles Etienne Goli
{"title":"Study of Nonlinear Second-Order Differential Inclusion Driven by a Laplacian Operator Using the Lower and Upper Solutions Method","authors":"Droh Arsène Béhi, Assohoun Adjé, Konan Charles Etienne Goli","doi":"10.1155/2024/2258546","DOIUrl":"https://doi.org/10.1155/2024/2258546","url":null,"abstract":"In this paper, we study a second-order differential inclusion under boundary conditions governed by maximal monotone multivalued operators. These boundary conditions incorporate the classical Dirichlet, Neumann, and Sturm–Liouville problems. Our method of study combines the method of lower and upper solutions, the analysis of multivalued functions, and the theory of monotone operators. We show the existence of solutions when the lower solution <svg height=\"6.34998pt\" style=\"vertical-align:-0.2063899pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.14359 7.47218 6.34998\" width=\"7.47218pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> and the upper solution <svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.63704 9.39034\" width=\"6.63704pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> are well ordered. Next, we show how our arguments of proof can be easily exploited to establish the existence of extremal solutions in the functional interval <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 14.796 12.7178\" width=\"14.796pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.485,0)\"><use xlink:href=\"#g113-240\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.832,0)\"></path></g></svg><span></span><span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"16.925183800000003 -9.28833 11.192 12.7178\" width=\"11.192pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,16.975,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.013,0,0,-0.013,23.492,0)\"></path></g></svg>.</span></span> We also show that our method can be applied to the periodic case.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"165 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140125716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Convergent Legendre Spectral Collocation Method for the Variable-Order Fractional-Functional Optimal Control Problems 变阶分式函数优化控制问题的收敛 Legendre 谱配位法
IF 1.4 4区 数学
Journal of Mathematics Pub Date : 2024-03-09 DOI: 10.1155/2024/3934093
Zahra Pirouzeh, Mohammad Hadi Noori Skandari, Kameleh Nassiri Pirbazari
{"title":"A Convergent Legendre Spectral Collocation Method for the Variable-Order Fractional-Functional Optimal Control Problems","authors":"Zahra Pirouzeh, Mohammad Hadi Noori Skandari, Kameleh Nassiri Pirbazari","doi":"10.1155/2024/3934093","DOIUrl":"https://doi.org/10.1155/2024/3934093","url":null,"abstract":"In this paper, a numerical method is applied to approximate the solution of variable-order fractional-functional optimal control problems. The variable-order fractional derivative is described in the type III Caputo sense. The technique of approximating the optimal solution of the problem using Lagrange interpolating polynomials is employed by utilizing the shifted Legendre–Gauss–Lobatto collocation points. To obtain the coefficients of these interpolating polynomials, the problem is transformed into a nonlinear programming problem. The proposed method offers a significant advantage in that it does not require the approximation of singular integral. In addition, the matrix differentiation is calculated accurately and efficiently, overcoming the difficulties posed by variable-order fractional derivatives. The convergence of the proposed method is investigated, and to validate the effectiveness of our proposed method, some examples are presented. We achieved an excellent agreement between numerical and exact solutions for different variable orders, indicating our method’s good performance.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"37 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140076157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a Perturbed Risk Model with Time-Dependent Claim Sizes 关于索赔额随时间变化的扰动风险模型
IF 1.4 4区 数学
Journal of Mathematics Pub Date : 2024-03-07 DOI: 10.1155/2024/8080309
Longfei Wei, Jia Hao, Shiyu Song, Zhenhua Bao
{"title":"On a Perturbed Risk Model with Time-Dependent Claim Sizes","authors":"Longfei Wei, Jia Hao, Shiyu Song, Zhenhua Bao","doi":"10.1155/2024/8080309","DOIUrl":"https://doi.org/10.1155/2024/8080309","url":null,"abstract":"We consider a risk model perturbed by a Brownian motion, where the individual claim sizes are dependent on the inter-claim times. We study the Gerber–Shiu functions when ruin is due to a claim or the jump-diffusion process. Integro-differential equations and Laplace transforms satisfied by the Gerber–Shiu functions are obtained. Then, it is shown that the expected discounted penalty functions satisfy defective renewal equations. Explicit expressions can be obtained for exponential claim sizes. Finally, a numerical example is provided to measure the impact of the various dependence parameters in the risk model on the ruin probabilities.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"18 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140053822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Partial Exact Controllability of Fractional Control Systems in Conformable Sense 论可变意义上分数控制系统的部分精确可控性
IF 1.4 4区 数学
Journal of Mathematics Pub Date : 2024-03-07 DOI: 10.1155/2024/9531298
Maher Jneid
{"title":"On Partial Exact Controllability of Fractional Control Systems in Conformable Sense","authors":"Maher Jneid","doi":"10.1155/2024/9531298","DOIUrl":"https://doi.org/10.1155/2024/9531298","url":null,"abstract":"In this work, we investigate the partial exact controllability of fractional semilinear control systems in the sense of conformable derivatives. Initially, we establish the existence and uniqueness of the mild solution for this type of fractional control systems. Then, by employing a contraction mapping principle, we obtain sufficient conditions for the conformable fractional semilinear system to be partially exactly controllable, assuming that its associated linear part is partially exactly controllable. To demonstrate the efficacy of the theoretical findings, a typical example is provided at the end.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"10 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140053991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distance-Based Fractional Dimension of Certain Wheel Networks 某些车轮网络基于距离的分数维度
IF 1.4 4区 数学
Journal of Mathematics Pub Date : 2024-03-04 DOI: 10.1155/2024/8870335
Hassan Zafar, Muhammad Javaid, Mamo Abebe Ashebo
{"title":"Distance-Based Fractional Dimension of Certain Wheel Networks","authors":"Hassan Zafar, Muhammad Javaid, Mamo Abebe Ashebo","doi":"10.1155/2024/8870335","DOIUrl":"https://doi.org/10.1155/2024/8870335","url":null,"abstract":"Metric dimension is one of the distance-based parameters which are used to find the position of the robot in a network space by utilizing lesser number of notes and minimum consumption of time. It is also used to characterize the chemical compounds. The metric dimension has a wide range of applications in the field of computer science such as integer programming, radar tracking, pattern recognition, robot navigation, and image processing. A vertex &lt;svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt; in a network &lt;svg height=\"8.73791pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.68809 12.4829 8.73791\" width=\"12.4829pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt; resolves the adjacent pair of vertices &lt;svg height=\"6.1934pt\" style=\"vertical-align:-0.2324901pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 13.0048 6.1934\" width=\"13.0048pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,6.994,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt; if &lt;svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-121\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt; attains an unequal distance from end points of &lt;span&gt;&lt;svg height=\"6.1934pt\" style=\"vertical-align:-0.2324901pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 13.0048 6.1934\" width=\"13.0048pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;use xlink:href=\"#g113-118\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,6.994,0)\"&gt;&lt;use xlink:href=\"#g185-40\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;.&lt;/span&gt; A local resolving neighbourhood set &lt;svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 35.7732 12.4698\" width=\"35.7732pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,0,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,13.708,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,18.206,0)\"&gt;&lt;use xlink:href=\"#g113-118\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,25.201,0)\"&gt;&lt;use xlink:href=\"#g185-40\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;g transform=\"matrix(.013,0,0,-0.013,31.064,0)\"&gt;&lt;/path&gt;&lt;/g&gt;&lt;/svg&gt; is a set of vertices of &lt;svg height=\"8.73791pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.68809 12.4829 8.73791\" width=\"12.4829pt\" xmlns=\"http://www.w3.org/2000/s","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"171 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional Mixed Weighted Convolution and Its Application in Convolution Integral Equations 分数混合加权卷积及其在卷积积分方程中的应用
IF 1.4 4区 数学
Journal of Mathematics Pub Date : 2024-03-04 DOI: 10.1155/2024/5375401
Rongbo Wang, Qiang Feng
{"title":"Fractional Mixed Weighted Convolution and Its Application in Convolution Integral Equations","authors":"Rongbo Wang, Qiang Feng","doi":"10.1155/2024/5375401","DOIUrl":"https://doi.org/10.1155/2024/5375401","url":null,"abstract":"The convolution integral equations are very important in optics and signal processing domain. In this paper, fractional mixed-weighted convolution is defined based on the fractional cosine transform; the corresponding convolution theorem is achieved. The properties of fractional mixed-weighted convolution and Young’s type theorem are also explored. Based on the fractional mixed-weighted convolution and fractional cosine transform, two kinds of convolution integral equations are considered, the explicit solutions of fractional convolution integral equations are obtained, and the computational complexity of solutions are also analyzed.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"227 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Solution of Burgers–Huxley Equation Using a Higher Order Collocation Method 使用高阶配位法数值求解伯格斯-赫胥黎方程
IF 1.4 4区 数学
Journal of Mathematics Pub Date : 2024-02-29 DOI: 10.1155/2024/2439343
Aditi Singh, Sumita Dahiya, Homan Emadifar, Masoumeh Khademi
{"title":"Numerical Solution of Burgers–Huxley Equation Using a Higher Order Collocation Method","authors":"Aditi Singh, Sumita Dahiya, Homan Emadifar, Masoumeh Khademi","doi":"10.1155/2024/2439343","DOIUrl":"https://doi.org/10.1155/2024/2439343","url":null,"abstract":"In this paper, the collocation method with cubic B-spline as basis function has been successfully applied to numerically solve the Burgers–Huxley equation. This equation illustrates a model for describing the interaction between reaction mechanisms, convection effects, and diffusion transport. Quasi-linearization has been employed to deal with the nonlinearity of equations. The Crank–Nicolson implicit scheme is used for discretization of the equation and the resulting system turned out to be semi-implicit. The stability of the method is discussed using Fourier series analysis (von Neumann method), and it has been concluded that the method is unconditionally stable. Various numerical experiments have been performed to demonstrate the authenticity of the scheme. We have found that the computed numerical solutions are in good agreement with the exact solutions and are competent with those available in the literature. Accuracy and minimal computational efforts are the key features of the proposed method.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"170 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An RBF-LOD Method for Solving Stochastic Diffusion Equations 解决随机扩散方程的 RBF-LOD 方法
IF 1.4 4区 数学
Journal of Mathematics Pub Date : 2024-02-28 DOI: 10.1155/2024/9955109
Samaneh Mokhtari, Ali Mesforush, Reza Mokhtari, Rahman Akbari
{"title":"An RBF-LOD Method for Solving Stochastic Diffusion Equations","authors":"Samaneh Mokhtari, Ali Mesforush, Reza Mokhtari, Rahman Akbari","doi":"10.1155/2024/9955109","DOIUrl":"https://doi.org/10.1155/2024/9955109","url":null,"abstract":"In this study, we introduce an innovative approach to solving stochastic equations in two and three dimensions, leveraging a time-splitting strategy. Our method combines radial basis function (RBF) spatial discretization with the Crank–Nicolson scheme and the local one-dimensional (LOD) method for temporal approximation. To navigate the probabilistic space inherent in these equations, we employ the Monte Carlo method, providing accurate estimates for expectations and variations. We apply our approach to tackle challenging problems, including two-dimensional convection-diffusion and Burgers’ equations, resulting in reduced computational and memory requirements. Through rigorous testing against diverse problem sets, our methodology demonstrates efficiency and reliability, underscoring its potential as a valuable tool in solving complex multidimensional stochastic equations. We have validated the method’s stability and showcased its convergence as the number of collocation points increases. These findings serve as compelling evidence of the suggested method’s convergence properties.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"17 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140009972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信