Droh Arsène Béhi, Assohoun Adjé, Konan Charles Etienne Goli
{"title":"用上下解法研究拉普拉斯算子驱动的非线性二阶微分包容","authors":"Droh Arsène Béhi, Assohoun Adjé, Konan Charles Etienne Goli","doi":"10.1155/2024/2258546","DOIUrl":null,"url":null,"abstract":"In this paper, we study a second-order differential inclusion under boundary conditions governed by maximal monotone multivalued operators. These boundary conditions incorporate the classical Dirichlet, Neumann, and Sturm–Liouville problems. Our method of study combines the method of lower and upper solutions, the analysis of multivalued functions, and the theory of monotone operators. We show the existence of solutions when the lower solution <svg height=\"6.34998pt\" style=\"vertical-align:-0.2063899pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.14359 7.47218 6.34998\" width=\"7.47218pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> and the upper solution <svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.63704 9.39034\" width=\"6.63704pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> are well ordered. Next, we show how our arguments of proof can be easily exploited to establish the existence of extremal solutions in the functional interval <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 14.796 12.7178\" width=\"14.796pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.485,0)\"><use xlink:href=\"#g113-240\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.832,0)\"></path></g></svg><span></span><span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"16.925183800000003 -9.28833 11.192 12.7178\" width=\"11.192pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,16.975,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.013,0,0,-0.013,23.492,0)\"></path></g></svg>.</span></span> We also show that our method can be applied to the periodic case.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"165 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Nonlinear Second-Order Differential Inclusion Driven by a Laplacian Operator Using the Lower and Upper Solutions Method\",\"authors\":\"Droh Arsène Béhi, Assohoun Adjé, Konan Charles Etienne Goli\",\"doi\":\"10.1155/2024/2258546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a second-order differential inclusion under boundary conditions governed by maximal monotone multivalued operators. These boundary conditions incorporate the classical Dirichlet, Neumann, and Sturm–Liouville problems. Our method of study combines the method of lower and upper solutions, the analysis of multivalued functions, and the theory of monotone operators. We show the existence of solutions when the lower solution <svg height=\\\"6.34998pt\\\" style=\\\"vertical-align:-0.2063899pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -6.14359 7.47218 6.34998\\\" width=\\\"7.47218pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> and the upper solution <svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 6.63704 9.39034\\\" width=\\\"6.63704pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> are well ordered. Next, we show how our arguments of proof can be easily exploited to establish the existence of extremal solutions in the functional interval <span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 14.796 12.7178\\\" width=\\\"14.796pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,4.485,0)\\\"><use xlink:href=\\\"#g113-240\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.832,0)\\\"></path></g></svg><span></span><span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"16.925183800000003 -9.28833 11.192 12.7178\\\" width=\\\"11.192pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,16.975,0)\\\"><use xlink:href=\\\"#g113-225\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,23.492,0)\\\"></path></g></svg>.</span></span> We also show that our method can be applied to the periodic case.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"165 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2258546\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/2258546","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Study of Nonlinear Second-Order Differential Inclusion Driven by a Laplacian Operator Using the Lower and Upper Solutions Method
In this paper, we study a second-order differential inclusion under boundary conditions governed by maximal monotone multivalued operators. These boundary conditions incorporate the classical Dirichlet, Neumann, and Sturm–Liouville problems. Our method of study combines the method of lower and upper solutions, the analysis of multivalued functions, and the theory of monotone operators. We show the existence of solutions when the lower solution and the upper solution are well ordered. Next, we show how our arguments of proof can be easily exploited to establish the existence of extremal solutions in the functional interval . We also show that our method can be applied to the periodic case.
期刊介绍:
Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.