用上下解法研究拉普拉斯算子驱动的非线性二阶微分包容

IF 1.3 4区 数学 Q1 MATHEMATICS
Droh Arsène Béhi, Assohoun Adjé, Konan Charles Etienne Goli
{"title":"用上下解法研究拉普拉斯算子驱动的非线性二阶微分包容","authors":"Droh Arsène Béhi, Assohoun Adjé, Konan Charles Etienne Goli","doi":"10.1155/2024/2258546","DOIUrl":null,"url":null,"abstract":"In this paper, we study a second-order differential inclusion under boundary conditions governed by maximal monotone multivalued operators. These boundary conditions incorporate the classical Dirichlet, Neumann, and Sturm–Liouville problems. Our method of study combines the method of lower and upper solutions, the analysis of multivalued functions, and the theory of monotone operators. We show the existence of solutions when the lower solution <svg height=\"6.34998pt\" style=\"vertical-align:-0.2063899pt\" version=\"1.1\" viewbox=\"-0.0498162 -6.14359 7.47218 6.34998\" width=\"7.47218pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> and the upper solution <svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.63704 9.39034\" width=\"6.63704pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> are well ordered. Next, we show how our arguments of proof can be easily exploited to establish the existence of extremal solutions in the functional interval <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 14.796 12.7178\" width=\"14.796pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.485,0)\"><use xlink:href=\"#g113-240\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.832,0)\"></path></g></svg><span></span><span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"16.925183800000003 -9.28833 11.192 12.7178\" width=\"11.192pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,16.975,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.013,0,0,-0.013,23.492,0)\"></path></g></svg>.</span></span> We also show that our method can be applied to the periodic case.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"165 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Nonlinear Second-Order Differential Inclusion Driven by a Laplacian Operator Using the Lower and Upper Solutions Method\",\"authors\":\"Droh Arsène Béhi, Assohoun Adjé, Konan Charles Etienne Goli\",\"doi\":\"10.1155/2024/2258546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a second-order differential inclusion under boundary conditions governed by maximal monotone multivalued operators. These boundary conditions incorporate the classical Dirichlet, Neumann, and Sturm–Liouville problems. Our method of study combines the method of lower and upper solutions, the analysis of multivalued functions, and the theory of monotone operators. We show the existence of solutions when the lower solution <svg height=\\\"6.34998pt\\\" style=\\\"vertical-align:-0.2063899pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -6.14359 7.47218 6.34998\\\" width=\\\"7.47218pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> and the upper solution <svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 6.63704 9.39034\\\" width=\\\"6.63704pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> are well ordered. Next, we show how our arguments of proof can be easily exploited to establish the existence of extremal solutions in the functional interval <span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 14.796 12.7178\\\" width=\\\"14.796pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,4.485,0)\\\"><use xlink:href=\\\"#g113-240\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.832,0)\\\"></path></g></svg><span></span><span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"16.925183800000003 -9.28833 11.192 12.7178\\\" width=\\\"11.192pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,16.975,0)\\\"><use xlink:href=\\\"#g113-225\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,23.492,0)\\\"></path></g></svg>.</span></span> We also show that our method can be applied to the periodic case.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"165 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2258546\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/2258546","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由最大单调多值算子支配的边界条件下的二阶微分包含问题。这些边界条件包含经典的迪里夏特、诺伊曼和斯特姆-利乌维尔问题。我们的研究方法结合了下解和上解方法、多值函数分析和单调算子理论。我们证明了当下解和上解有序时,解的存在性。接下来,我们将展示如何利用我们的证明论证轻松地建立函数区间中极值解的存在性。我们还证明了我们的方法可以应用于周期情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Nonlinear Second-Order Differential Inclusion Driven by a Laplacian Operator Using the Lower and Upper Solutions Method
In this paper, we study a second-order differential inclusion under boundary conditions governed by maximal monotone multivalued operators. These boundary conditions incorporate the classical Dirichlet, Neumann, and Sturm–Liouville problems. Our method of study combines the method of lower and upper solutions, the analysis of multivalued functions, and the theory of monotone operators. We show the existence of solutions when the lower solution and the upper solution are well ordered. Next, we show how our arguments of proof can be easily exploited to establish the existence of extremal solutions in the functional interval . We also show that our method can be applied to the periodic case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信