{"title":"A Second-Order Finite-Difference Method for Derivative-Free Optimization","authors":"Qian Chen, Peng Wang, Detong Zhu","doi":"10.1155/2024/1947996","DOIUrl":null,"url":null,"abstract":"In this paper, a second-order finite-difference method is proposed for finding the second-order stationary point of derivative-free nonconvex unconstrained optimization problems. The forward-difference or the central-difference technique is used to approximate the gradient and Hessian matrix of objective function, respectively. The traditional trust-region framework is used, and we minimize the approximation trust region subproblem to obtain the search direction. The global convergence of the algorithm is given without the fully quadratic assumption. Numerical results show the effectiveness of the algorithm using the forward-difference and central-difference approximations.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"39 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/1947996","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a second-order finite-difference method is proposed for finding the second-order stationary point of derivative-free nonconvex unconstrained optimization problems. The forward-difference or the central-difference technique is used to approximate the gradient and Hessian matrix of objective function, respectively. The traditional trust-region framework is used, and we minimize the approximation trust region subproblem to obtain the search direction. The global convergence of the algorithm is given without the fully quadratic assumption. Numerical results show the effectiveness of the algorithm using the forward-difference and central-difference approximations.
期刊介绍:
Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.