某些车轮网络基于距离的分数维度

IF 1.3 4区 数学 Q1 MATHEMATICS
Hassan Zafar, Muhammad Javaid, Mamo Abebe Ashebo
{"title":"某些车轮网络基于距离的分数维度","authors":"Hassan Zafar, Muhammad Javaid, Mamo Abebe Ashebo","doi":"10.1155/2024/8870335","DOIUrl":null,"url":null,"abstract":"Metric dimension is one of the distance-based parameters which are used to find the position of the robot in a network space by utilizing lesser number of notes and minimum consumption of time. It is also used to characterize the chemical compounds. The metric dimension has a wide range of applications in the field of computer science such as integer programming, radar tracking, pattern recognition, robot navigation, and image processing. A vertex <svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> in a network <svg height=\"8.73791pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.68809 12.4829 8.73791\" width=\"12.4829pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> resolves the adjacent pair of vertices <svg height=\"6.1934pt\" style=\"vertical-align:-0.2324901pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 13.0048 6.1934\" width=\"13.0048pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,6.994,0)\"></path></g></svg> if <svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-121\"></use></g></svg> attains an unequal distance from end points of <span><svg height=\"6.1934pt\" style=\"vertical-align:-0.2324901pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 13.0048 6.1934\" width=\"13.0048pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.994,0)\"><use xlink:href=\"#g185-40\"></use></g></svg>.</span> A local resolving neighbourhood set <svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 35.7732 12.4698\" width=\"35.7732pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,13.708,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,18.206,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.201,0)\"><use xlink:href=\"#g185-40\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.064,0)\"></path></g></svg> is a set of vertices of <svg height=\"8.73791pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.68809 12.4829 8.73791\" width=\"12.4829pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g197-34\"></use></g></svg> which resolve <span><svg height=\"6.1934pt\" style=\"vertical-align:-0.2324901pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 13.0048 6.1934\" width=\"13.0048pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.994,0)\"><use xlink:href=\"#g185-40\"></use></g></svg>.</span> A mapping <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 13.981 11.5564\" width=\"13.981pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.017,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"17.5631838 -9.28833 52.368 11.5564\" width=\"52.368pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,17.613,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,26.837,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.335,0)\"><use xlink:href=\"#g197-34\"></use></g><g transform=\"matrix(.013,0,0,-0.013,43.674,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,51.803,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,57.579,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"73.6401838 -9.28833 13.689 11.5564\" width=\"13.689pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,73.69,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,78.175,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,84.415,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"89.50818380000001 -9.28833 11.06 11.5564\" width=\"11.06pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,89.558,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,95.798,0)\"></path></g></svg></span> is called local resolving function of <svg height=\"8.73791pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.68809 12.4829 8.73791\" width=\"12.4829pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g197-34\"></use></g></svg> if <span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 63.206 12.4698\" width=\"63.206pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-223\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.385,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.883,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,19.969,3.132)\"><use xlink:href=\"#g50-77\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.592,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,30.09,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.013,0,0,-0.013,37.084,0)\"><use xlink:href=\"#g185-40\"></use></g><g transform=\"matrix(.013,0,0,-0.013,42.947,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,47.445,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,55.575,0)\"></path></g></svg><span></span><svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"66.7881838 -9.28833 6.563 12.4698\" width=\"6.563pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,66.838,0)\"><use xlink:href=\"#g113-50\"></use></g></svg></span> for any adjacent pair of vertices of <svg height=\"6.1934pt\" style=\"vertical-align:-0.2324901pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 13.0048 6.1934\" width=\"13.0048pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.013,0,0,-0.013,6.994,0)\"><use xlink:href=\"#g185-40\"></use></g></svg> of <svg height=\"8.73791pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.68809 12.4829 8.73791\" width=\"12.4829pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g197-34\"></use></g></svg> and the minimal value of <svg height=\"12.4698pt\" style=\"vertical-align:-3.18147pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 52.2146 12.4698\" width=\"52.2146pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-223\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.385,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.883,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,19.969,3.132)\"><use xlink:href=\"#g50-77\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.592,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,30.09,0)\"><use xlink:href=\"#g113-118\"></use></g><g transform=\"matrix(.013,0,0,-0.013,37.084,0)\"><use xlink:href=\"#g185-40\"></use></g><g transform=\"matrix(.013,0,0,-0.013,42.947,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,47.445,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> for all local resolving functions <svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.51131 6.1673\" width=\"7.51131pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-223\"></use></g></svg> of <svg height=\"8.73791pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.68809 12.4829 8.73791\" width=\"12.4829pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g197-34\"></use></g></svg> is called local fractional metric dimension of <span><svg height=\"8.73791pt\" style=\"vertical-align:-0.04981995pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.68809 12.4829 8.73791\" width=\"12.4829pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g197-34\"></use></g></svg>.</span> In this paper, we have studied the local fractional metric dimension of wheel-related networks such as web-wheel network, subdivision of wheel network, line network of subdivision of wheel network, and double-wheel network and also examined their boundedness.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"171 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance-Based Fractional Dimension of Certain Wheel Networks\",\"authors\":\"Hassan Zafar, Muhammad Javaid, Mamo Abebe Ashebo\",\"doi\":\"10.1155/2024/8870335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metric dimension is one of the distance-based parameters which are used to find the position of the robot in a network space by utilizing lesser number of notes and minimum consumption of time. It is also used to characterize the chemical compounds. The metric dimension has a wide range of applications in the field of computer science such as integer programming, radar tracking, pattern recognition, robot navigation, and image processing. A vertex <svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 7.39387 6.1673\\\" width=\\\"7.39387pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> in a network <svg height=\\\"8.73791pt\\\" style=\\\"vertical-align:-0.04981995pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.68809 12.4829 8.73791\\\" width=\\\"12.4829pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> resolves the adjacent pair of vertices <svg height=\\\"6.1934pt\\\" style=\\\"vertical-align:-0.2324901pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 13.0048 6.1934\\\" width=\\\"13.0048pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,6.994,0)\\\"></path></g></svg> if <svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 7.39387 6.1673\\\" width=\\\"7.39387pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-121\\\"></use></g></svg> attains an unequal distance from end points of <span><svg height=\\\"6.1934pt\\\" style=\\\"vertical-align:-0.2324901pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 13.0048 6.1934\\\" width=\\\"13.0048pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-118\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,6.994,0)\\\"><use xlink:href=\\\"#g185-40\\\"></use></g></svg>.</span> A local resolving neighbourhood set <svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 35.7732 12.4698\\\" width=\\\"35.7732pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,13.708,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,18.206,0)\\\"><use xlink:href=\\\"#g113-118\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.201,0)\\\"><use xlink:href=\\\"#g185-40\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,31.064,0)\\\"></path></g></svg> is a set of vertices of <svg height=\\\"8.73791pt\\\" style=\\\"vertical-align:-0.04981995pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.68809 12.4829 8.73791\\\" width=\\\"12.4829pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g197-34\\\"></use></g></svg> which resolve <span><svg height=\\\"6.1934pt\\\" style=\\\"vertical-align:-0.2324901pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 13.0048 6.1934\\\" width=\\\"13.0048pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-118\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,6.994,0)\\\"><use xlink:href=\\\"#g185-40\\\"></use></g></svg>.</span> A mapping <span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 13.981 11.5564\\\" width=\\\"13.981pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,11.017,0)\\\"></path></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"17.5631838 -9.28833 52.368 11.5564\\\" width=\\\"52.368pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,17.613,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,26.837,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,31.335,0)\\\"><use xlink:href=\\\"#g197-34\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,43.674,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,51.803,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,57.579,0)\\\"></path></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"73.6401838 -9.28833 13.689 11.5564\\\" width=\\\"13.689pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,73.69,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,78.175,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,84.415,0)\\\"></path></g></svg><span></span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"89.50818380000001 -9.28833 11.06 11.5564\\\" width=\\\"11.06pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,89.558,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,95.798,0)\\\"></path></g></svg></span> is called local resolving function of <svg height=\\\"8.73791pt\\\" style=\\\"vertical-align:-0.04981995pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.68809 12.4829 8.73791\\\" width=\\\"12.4829pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g197-34\\\"></use></g></svg> if <span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 63.206 12.4698\\\" width=\\\"63.206pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-223\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,7.385,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.883,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,19.969,3.132)\\\"><use xlink:href=\\\"#g50-77\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.592,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,30.09,0)\\\"><use xlink:href=\\\"#g113-118\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,37.084,0)\\\"><use xlink:href=\\\"#g185-40\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,42.947,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,47.445,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,55.575,0)\\\"></path></g></svg><span></span><svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"66.7881838 -9.28833 6.563 12.4698\\\" width=\\\"6.563pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,66.838,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g></svg></span> for any adjacent pair of vertices of <svg height=\\\"6.1934pt\\\" style=\\\"vertical-align:-0.2324901pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 13.0048 6.1934\\\" width=\\\"13.0048pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-118\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,6.994,0)\\\"><use xlink:href=\\\"#g185-40\\\"></use></g></svg> of <svg height=\\\"8.73791pt\\\" style=\\\"vertical-align:-0.04981995pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.68809 12.4829 8.73791\\\" width=\\\"12.4829pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g197-34\\\"></use></g></svg> and the minimal value of <svg height=\\\"12.4698pt\\\" style=\\\"vertical-align:-3.18147pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 52.2146 12.4698\\\" width=\\\"52.2146pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-223\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,7.385,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.883,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,19.969,3.132)\\\"><use xlink:href=\\\"#g50-77\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.592,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,30.09,0)\\\"><use xlink:href=\\\"#g113-118\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,37.084,0)\\\"><use xlink:href=\\\"#g185-40\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,42.947,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,47.445,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg> for all local resolving functions <svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 7.51131 6.1673\\\" width=\\\"7.51131pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-223\\\"></use></g></svg> of <svg height=\\\"8.73791pt\\\" style=\\\"vertical-align:-0.04981995pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.68809 12.4829 8.73791\\\" width=\\\"12.4829pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g197-34\\\"></use></g></svg> is called local fractional metric dimension of <span><svg height=\\\"8.73791pt\\\" style=\\\"vertical-align:-0.04981995pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.68809 12.4829 8.73791\\\" width=\\\"12.4829pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g197-34\\\"></use></g></svg>.</span> In this paper, we have studied the local fractional metric dimension of wheel-related networks such as web-wheel network, subdivision of wheel network, line network of subdivision of wheel network, and double-wheel network and also examined their boundedness.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"171 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8870335\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/8870335","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

公制维度是基于距离的参数之一,用于在网络空间中利用较少的注释和最短的时间找到机器人的位置。它还可用于描述化合物的特征。度量维度在计算机科学领域有着广泛的应用,如整数编程、雷达跟踪、模式识别、机器人导航和图像处理。如果网络中的一个顶点与相邻的一对顶点的端点距离不相等,则该顶点解析了相邻的一对顶点。 局部解析邻域集是一个顶点集,其中解析了............的顶点。本文研究了与轮子有关的网络(如网轮网络、细分轮子网络、细分轮子网络的线网络和双轮网络)的局部分数度量维度,并检验了它们的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance-Based Fractional Dimension of Certain Wheel Networks
Metric dimension is one of the distance-based parameters which are used to find the position of the robot in a network space by utilizing lesser number of notes and minimum consumption of time. It is also used to characterize the chemical compounds. The metric dimension has a wide range of applications in the field of computer science such as integer programming, radar tracking, pattern recognition, robot navigation, and image processing. A vertex in a network resolves the adjacent pair of vertices if attains an unequal distance from end points of . A local resolving neighbourhood set is a set of vertices of which resolve . A mapping is called local resolving function of if for any adjacent pair of vertices of of and the minimal value of for all local resolving functions of is called local fractional metric dimension of . In this paper, we have studied the local fractional metric dimension of wheel-related networks such as web-wheel network, subdivision of wheel network, line network of subdivision of wheel network, and double-wheel network and also examined their boundedness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信