Marine Life Science & Technology最新文献

筛选
英文 中文
Expansion and adaptive evolution of the WRKY transcription factor family in Avicennia mangrove trees. 阿维森尼亚红树林WRKY转录因子家族的扩展和适应性进化。
IF 5.7 2区 生物学
Marine Life Science & Technology Pub Date : 2023-05-23 eCollection Date: 2023-05-01 DOI: 10.1007/s42995-023-00177-y
Xiao Feng, Guohong Li, Weihong Wu, Haomin Lyu, Jiexin Wang, Cong Liu, Cairong Zhong, Suhua Shi, Ziwen He
{"title":"Expansion and adaptive evolution of the <i>WRKY</i> transcription factor family in <i>Avicennia</i> mangrove trees.","authors":"Xiao Feng,&nbsp;Guohong Li,&nbsp;Weihong Wu,&nbsp;Haomin Lyu,&nbsp;Jiexin Wang,&nbsp;Cong Liu,&nbsp;Cairong Zhong,&nbsp;Suhua Shi,&nbsp;Ziwen He","doi":"10.1007/s42995-023-00177-y","DOIUrl":"10.1007/s42995-023-00177-y","url":null,"abstract":"<p><p>Mangroves are adapted to intertidal zones, which present extreme environmental conditions. WRKYs are among the most prominent transcription factors (TFs) in higher plants and act through various interconnected networks to regulate responses to multiple abiotic stressors. Here, based on omic data, we investigated the landscape and evolutionary patterns of WRKYs in the main mangrove genus <i>Avicennia</i>. We found that both the number and the proportion of TFs and WRKYs in <i>Avicennia</i> species exceeded their inland relatives, indicating a significant expansion of WRKYs in <i>Avicennia</i>. We identified 109 <i>WRKY</i> genes in the representative species <i>Avicennia marina</i>. Comparative genomic analysis showed that two recent whole-genome duplication (WGD) events played a critical role in the expansion of <i>WRKY</i>s, and 88% of <i>Avicennia marina WRKY</i>s (<i>AmWRKY</i>s) have been retained following these WGDs. Applying comparative transcriptomics on roots under experimental salt gradients, we inferred that there is high divergence in the expression of WGD-retained <i>AmWRKY</i>s. Moreover, we found that the expression of 16 <i>AmWRKY</i>s was stable between freshwater and moderately saline water but increased when the trees were exposed to high salinity. In particular, 14 duplicates were retained following the two recent WGD events, indicating potential neo- and sub-functionalization. We also found that WRKYs could interact with other upregulated genes involved in signalling pathways and natural antioxidant biosynthesis to enhance salt tolerance, contributing to the adaptation to intertidal zones. Our omic data of the WRKY family in <i>A. marina</i> broadens the understanding of how a TF family relates to the adaptive evolution of mangroves.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00177-y.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 2","pages":"155-168"},"PeriodicalIF":5.7,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9637370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The neuroprotective effects of peracetylated chitosan oligosaccharides against β-amyloid-induced cognitive deficits in rats. 过乙酰壳聚糖寡糖对β-淀粉样蛋白诱导的大鼠认知缺陷的神经保护作用。
IF 5.7 2区 生物学
Marine Life Science & Technology Pub Date : 2023-05-22 eCollection Date: 2023-05-01 DOI: 10.1007/s42995-023-00172-3
Cui Hao, Minmin Han, Wei Wang, Cheng Yang, Jigang Wang, Yunliang Guo, Tao Xu, Lijuan Zhang, Chunxia Li
{"title":"The neuroprotective effects of peracetylated chitosan oligosaccharides against β-amyloid-induced cognitive deficits in rats.","authors":"Cui Hao, Minmin Han, Wei Wang, Cheng Yang, Jigang Wang, Yunliang Guo, Tao Xu, Lijuan Zhang, Chunxia Li","doi":"10.1007/s42995-023-00172-3","DOIUrl":"10.1007/s42995-023-00172-3","url":null,"abstract":"<p><p>Chitosan oligosaccharides (COSs) have been reported to possess a broad range of activities such as antitumor, antioxidant and neuroprotective activities. In this study, the protective effects and mechanisms of peracetylated chitosan oligosaccharides (PACOs) against Aβ-induced cognitive deficits were investigated in Sprague-Dawley (SD) rats. PACOs treatment significantly improved the learning and memory function of Alzheimer's disease (AD) rats and attenuated the neuron cell damage caused by Aβ. PACOs also markedly reduced the levels of lactate dehydrogenase (LDH) and Malondialdehyde (MDA) and decreased the phosphorylation of Tau protein to inhibit oxidative injury and inflammatory responses in AD rats. Further studies indicated that PACOs may promote the repair of Aβ induced nerve damage and inhibit neuronal apoptosis mainly through regulating PI3K/Akt/GSK3β signaling pathway. Consistently, the transcriptome analysis verified that the differentially expressed genes (DEGs) were mainly involved in neuron development and the PI3K-Akt signaling pathway. Taken together, peracetylated chitosan oligosaccharides (PACOs) have the potential to be developed into novel anti-AD agents targeting the cellular PI3K/Akt/GSK3β signaling pathway.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00172-3.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 2","pages":"211-222"},"PeriodicalIF":5.7,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9939880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colonization-competition dynamics of basal species shape food web complexity in island metacommunities. 基础物种的定居竞争动态塑造了岛屿元群落中食物网的复杂性。
IF 5.7 2区 生物学
Marine Life Science & Technology Pub Date : 2023-05-09 eCollection Date: 2023-05-01 DOI: 10.1007/s42995-023-00167-0
Guanming Guo, Fei Zhao, Ivan Nijs, Jinbao Liao
{"title":"Colonization-competition dynamics of basal species shape food web complexity in island metacommunities.","authors":"Guanming Guo,&nbsp;Fei Zhao,&nbsp;Ivan Nijs,&nbsp;Jinbao Liao","doi":"10.1007/s42995-023-00167-0","DOIUrl":"10.1007/s42995-023-00167-0","url":null,"abstract":"<p><p>Exploring how food web complexity emerges and evolves in island ecosystems remains a major challenge in ecology. Food webs assembled from multiple islands are commonly recognized as highly complex trophic networks that are dynamic in both space and time. In the context of global climate change, it remains unclear whether food web complexity will decrease in a monotonic fashion when undergoing habitat destruction (e.g., the inundation of islands due to sea-level rise). Here, we develop a simple yet comprehensive patch-dynamic framework for complex food web metacommunities subject to the competition-colonization tradeoff between basal species. We found that oscillations in food web topological complexity (characterized by species diversity, mean food chain length and the degree of omnivory) emerge along the habitat destruction gradient. This outcome is robust to changing parameters or relaxing the assumption of a strict competitive hierarchy. Having oscillations in food web complexity indicates that small habitat changes could have disproportionate negative effects on species diversity, thus the success of conservation actions should be evaluated not only on changes in biodiversity, but also on system robustness to habitat alteration. Overall, this study provides a parsimonious mechanistic explanation for the emergence of food web complexity in island ecosystems, further enriching our understanding of metacommunity assembly.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00167-0.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 2","pages":"169-177"},"PeriodicalIF":5.7,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9637819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of a natural small-molecule AMP-activated kinase activator that alleviates nonalcoholic steatohepatitis. 发现一种天然小分子AMP活化激酶激活剂,可缓解非酒精性脂肪性肝炎。
IF 5.7 2区 生物学
Marine Life Science & Technology Pub Date : 2023-04-30 eCollection Date: 2023-05-01 DOI: 10.1007/s42995-023-00168-z
Jin Chen, Li Xu, Xue-Qing Zhang, Xue Liu, Zi-Xuan Zhang, Qiu-Mei Zhu, Jian-Yu Liu, Muhammad Omer Iqbal, Ning Ding, Chang-Lun Shao, Mei-Yan Wei, Yu-Chao Gu
{"title":"Discovery of a natural small-molecule AMP-activated kinase activator that alleviates nonalcoholic steatohepatitis.","authors":"Jin Chen,&nbsp;Li Xu,&nbsp;Xue-Qing Zhang,&nbsp;Xue Liu,&nbsp;Zi-Xuan Zhang,&nbsp;Qiu-Mei Zhu,&nbsp;Jian-Yu Liu,&nbsp;Muhammad Omer Iqbal,&nbsp;Ning Ding,&nbsp;Chang-Lun Shao,&nbsp;Mei-Yan Wei,&nbsp;Yu-Chao Gu","doi":"10.1007/s42995-023-00168-z","DOIUrl":"10.1007/s42995-023-00168-z","url":null,"abstract":"<p><p>Non-alcoholic steatohepatitis (NASH) is a primary cause of cirrhosis and hepatocellular carcinoma. Unfortunately, there is no approved drug treatment for NASH. AMP-activated kinase (AMPK) is an important metabolic sensor and whole-body regulator. It has been proposed that AMPK activators could be used for treating metabolic diseases such as obesity, type 2 diabetes and NASH. In this study, we screened a marine natural compound library by monitoring AMPK activity and found a potent AMPK activator, candidusin A (<b>CHNQD-0803</b>). Further studies showed that <b>CHNQD-0803</b> directly binds recombinant AMPK with a <i>K</i><sub>D</sub> value of 4.728 × 10<sup>-8</sup> M and activates AMPK at both molecular and intracellular levels. We then investigated the roles and mechanisms of <b>CHNQD-0803</b> in PA-induced fat deposition, LPS-stimulated inflammation, TGF-β-induced fibrosis cell models and the MCD-induced mouse model of NASH. The results showed that <b>CHNQD-0803</b> inhibited the expression of adipogenesis genes and reduced fat deposition, negatively regulated the NF-κB-TNFα inflammatory axis to suppress inflammation, and ameliorated liver injury and fibrosis. These data indicate that <b>CHNQD-0803</b> as an AMPK activator is a novel potential therapeutic candidate for NASH treatment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00168-z.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 2","pages":"196-210"},"PeriodicalIF":5.7,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9637820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Phylotype resolved spatial variation and association patterns of planktonic Thaumarchaeota in eastern Chinese marginal seas. 系统发育类型解析了中国东部边缘海域浮游Thaumarchaeota的空间变异和组合模式。
IF 5.7 2区 生物学
Marine Life Science & Technology Pub Date : 2023-04-07 eCollection Date: 2023-05-01 DOI: 10.1007/s42995-023-00169-y
Jiwen Liu, Fuyan Huang, Jiao Liu, Xiaoyue Liu, Ruiyun Lin, Xiaosong Zhong, Brian Austin, Xiao-Hua Zhang
{"title":"Phylotype resolved spatial variation and association patterns of planktonic <i>Thaumarchaeota</i> in eastern Chinese marginal seas.","authors":"Jiwen Liu,&nbsp;Fuyan Huang,&nbsp;Jiao Liu,&nbsp;Xiaoyue Liu,&nbsp;Ruiyun Lin,&nbsp;Xiaosong Zhong,&nbsp;Brian Austin,&nbsp;Xiao-Hua Zhang","doi":"10.1007/s42995-023-00169-y","DOIUrl":"10.1007/s42995-023-00169-y","url":null,"abstract":"<p><p>The majority of marine ammonia oxidizers belong to <i>Thaumarchaeota</i>, a phylum of Archaea, which is distributed throughout the water column. Marine surface waters contain distinct thaumarchaeotal phylotypes compared to the deeper ocean, but spatial dynamics of the surface-associated lineages are largely unsolved. This study of 120 seawater samples from the eastern Chinese marginal seas identified contrasting distribution and association patterns among thaumarchaeotal phylotypes across different dimensions. Horizontally, <i>Nitrosopumilus</i>-like and <i>Nitrosopelagicus</i>-like phylotypes dominated the surface water (3 m) of the Yellow Sea (YS) and East China Sea (ECS), respectively, along with increased abundance of total free-living <i>Thaumarchaeota</i> in ECS. Similar compositional changes were observed in the surface microlayer. The spatial heterogeneity of particle-attached <i>Thaumarchaeota</i> was less clear in surface microlayers than in surface waters. Vertically, the <i>Nitrosopelagicus</i>-like phylotype increased in abundance from surface to 90 m in ECS, which led to an increase in the proportion of <i>Thaumarchaeota</i> relative to total prokaryotes. This occurred mainly in the free-living fraction. These results indicate a clear size-fractionated niche partitioning, which is more pronounced at lower depths than in the surface water/surface microlayer. In addition, associations of <i>Thaumarchaeota</i> with other microbial taxa varied between phylotypes and size fractions. Our results show that a phylotype-resolved and size-fractionated spatial heterogeneity of the thaumarchaeotal community is present in surface oceanic waters and a vertical variation of the <i>Nitrosopelagicus</i>-like phylotype is present in shallow shelf waters.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00169-y.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 2","pages":"257-270"},"PeriodicalIF":5.7,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9637369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Population structure and genome-wide evolutionary signatures reveal putative climate-driven habitat change and local adaptation in the large yellow croaker. 种群结构和全基因组进化特征揭示了气候驱动的大黄鱼栖息地变化和局部适应。
IF 5.7 2区 生物学
Marine Life Science & Technology Pub Date : 2023-04-07 eCollection Date: 2023-05-01 DOI: 10.1007/s42995-023-00165-2
Baohua Chen, Yulin Bai, Jiaying Wang, Qiaozhen Ke, Zhixiong Zhou, Tao Zhou, Ying Pan, Renxie Wu, Xiongfei Wu, Weiqiang Zheng, Peng Xu
{"title":"Population structure and genome-wide evolutionary signatures reveal putative climate-driven habitat change and local adaptation in the large yellow croaker.","authors":"Baohua Chen,&nbsp;Yulin Bai,&nbsp;Jiaying Wang,&nbsp;Qiaozhen Ke,&nbsp;Zhixiong Zhou,&nbsp;Tao Zhou,&nbsp;Ying Pan,&nbsp;Renxie Wu,&nbsp;Xiongfei Wu,&nbsp;Weiqiang Zheng,&nbsp;Peng Xu","doi":"10.1007/s42995-023-00165-2","DOIUrl":"10.1007/s42995-023-00165-2","url":null,"abstract":"<p><p>The large yellow croaker (<i>Larimichthys</i> <i>crocea</i>) is one of the most economically valuable marine fish in China and is a notable species in ecological studies owing to a serious collapse of wild germplasm in the past few decades. The stock division and species distribution, which have important implications for ecological protection, germplasm recovery, and fishery resource management, have been debated since the 1960s. However, it is still uncertain even how many stocks exist in this species. To address this, we evaluated the fine-scale genetic structure of large yellow croaker populations distributed along the eastern and southern Chinese coastline based on 7.64 million SNP markers. Compared with the widely accepted stock boundaries proposed in the 1960s, our results revealed that a climate-driven habitat change probably occurred between the Naozhou (Nanhai) Stock and the Ming-Yuedong (Mindong) Stock. The boundary between these two stocks might have shifted northwards from the Pearl River Estuary to the northern area of the Taiwan Strait, accompanied by highly asymmetric introgression. In addition, we found divergent landscapes of natural selection between the stocks inhabiting northern and southern areas. The northern population exhibited highly agminated signatures of strong natural selection in genes related to developmental processes, whereas moderate and interspersed selective signatures were detected in many immune-related genes in the southern populations. These findings establish the stock status and genome-wide evolutionary landscapes of large yellow croaker, providing a basis for conservation, fisheries management and further evolutionary biology studies.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00165-2.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 2","pages":"141-154"},"PeriodicalIF":5.7,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9637818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Genomic diversity and ecological distribution of marine Pseudoalteromonas phages. 更正:海洋拟交替单胞菌噬菌体的基因组多样性和生态分布。
IF 5.7 2区 生物学
Marine Life Science & Technology Pub Date : 2023-04-07 eCollection Date: 2023-05-01 DOI: 10.1007/s42995-023-00166-1
Kaiyang Zheng, Yue Dong, Yantao Liang, Yundan Liu, Xinran Zhang, Wenjing Zhang, Ziyue Wang, Hongbing Shao, Yeong Yik Sung, Wen Jye Mok, Li Lian Wong, Andrew McMinn, Min Wang
{"title":"Correction: Genomic diversity and ecological distribution of marine <i>Pseudoalteromonas</i> phages.","authors":"Kaiyang Zheng,&nbsp;Yue Dong,&nbsp;Yantao Liang,&nbsp;Yundan Liu,&nbsp;Xinran Zhang,&nbsp;Wenjing Zhang,&nbsp;Ziyue Wang,&nbsp;Hongbing Shao,&nbsp;Yeong Yik Sung,&nbsp;Wen Jye Mok,&nbsp;Li Lian Wong,&nbsp;Andrew McMinn,&nbsp;Min Wang","doi":"10.1007/s42995-023-00166-1","DOIUrl":"10.1007/s42995-023-00166-1","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1007/s42995-022-00160-z.].</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 2","pages":"286-288"},"PeriodicalIF":5.7,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9570729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyketides with potential bioactivities from the mangrove-derived fungus Talaromyces sp. WHUF0362. 红树林真菌Talaromyces sp.WHUF30362中具有潜在生物活性的聚酮。
IF 5.7 2区 生物学
Marine Life Science & Technology Pub Date : 2023-03-31 eCollection Date: 2023-05-01 DOI: 10.1007/s42995-023-00170-5
Huawei Lv, Haibo Su, Yaxin Xue, Jia Jia, Hongkai Bi, Shoubao Wang, Jinkun Zhang, Mengdi Zhu, Mahmoud Emam, Hong Wang, Kui Hong, Xing-Nuo Li
{"title":"Polyketides with potential bioactivities from the mangrove-derived fungus <i>Talaromyces</i> sp. WHUF0362.","authors":"Huawei Lv,&nbsp;Haibo Su,&nbsp;Yaxin Xue,&nbsp;Jia Jia,&nbsp;Hongkai Bi,&nbsp;Shoubao Wang,&nbsp;Jinkun Zhang,&nbsp;Mengdi Zhu,&nbsp;Mahmoud Emam,&nbsp;Hong Wang,&nbsp;Kui Hong,&nbsp;Xing-Nuo Li","doi":"10.1007/s42995-023-00170-5","DOIUrl":"10.1007/s42995-023-00170-5","url":null,"abstract":"<p><p>Metabolites of microorganisms have long been considered as potential sources for drug discovery. In this study, five new depsidone derivatives, talaronins A-E (<b>1-5</b>) and three new xanthone derivatives, talaronins F-H (<b>6-8</b>), together with 16 known compounds (<b>9-24</b>), were isolated from the ethyl acetate extract of the mangrove-derived fungus <i>Talaromyces</i> species WHUF0362. The structures were elucidated by analysis of spectroscopic data and chemical methods including alkaline hydrolysis and Mosher's method. Compounds <b>1</b> and <b>2</b> each attached a dimethyl acetal group at the aromatic ring. A putative biogenetic relationship of the isolated metabolites was presented and suggested that the depsidones and the xanthones probably had the same biosynthetic precursors such as chrysophanol or rheochrysidin. The antimicrobial activity assay indicated that compounds <b>5</b>, <b>9</b>, <b>10</b>, and <b>14</b> showed potent activity against <i>Helicobacter pylori</i> with minimum inhibitory concentration (MIC) values in the range of 2.42-36.04 μmol/L. While secalonic acid D (<b>19</b>) demonstrated significant antimicrobial activity against four strains of <i>H. pylori</i> with MIC values in the range of 0.20 to 1.57 μmol/L. Furthermore, secalonic acid D (<b>19</b>) exhibited cytotoxicity against cancer cell lines Bel-7402 and HCT-116 with IC<sub>50</sub> values of 0.15 and 0.19 μmol/L, respectively. The structure-activity relationship of depsidone derivatives revealed that the presence of the lactone ring and the hydroxyl at C-10 was crucial to the antimicrobial activity against <i>H. pylori</i>. The depsidone derivatives are promising leads to inhibit <i>H. pylori</i> and provide an avenue for further development of novel antibiotics.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00170-5.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 2","pages":"232-241"},"PeriodicalIF":5.7,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232383/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9584950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Genomic characterization and molecular dating of the novel bacterium Permianibacter aggregans HW001T, which originated from Permian ground water. 源于二叠纪地下水的新型细菌 Permianibacter aggregans HW001T 的基因组特征和分子年代测定。
IF 5.7 2区 生物学
Marine Life Science & Technology Pub Date : 2023-02-24 eCollection Date: 2023-02-01 DOI: 10.1007/s42995-023-00164-3
Shuangfei Zhang, Russell T Hill, Hui Wang
{"title":"Genomic characterization and molecular dating of the novel bacterium <i>Permianibacter aggregans</i> HW001<sup>T</sup>, which originated from Permian ground water.","authors":"Shuangfei Zhang, Russell T Hill, Hui Wang","doi":"10.1007/s42995-023-00164-3","DOIUrl":"10.1007/s42995-023-00164-3","url":null,"abstract":"<p><p>The Permian Basin is a unique ecosystem located in the southwest of the USA. An unanswered question is whether the bacteria in the Permian Basin adapted to the changing paleomarine environment and survived in the remnants of Permian groundwater. In our previous study, a novel bacterial strain, <i>Permianibacter aggregans</i> HW001<sup>T</sup>, was isolated from microalgae cultures incubated with Permian Basin waters, and was shown to originate from the Permian Ocean. In this study, strain HW001<sup>T</sup> was shown to be the representative strain of a novel family, classified as 'Permianibacteraceae'. The results of molecular dating suggested that the strain HW001<sup>T</sup> diverged ~ 447 million years ago (mya), which is the early Permian period (~ 250 mya). Genome analysis was used to access its potential energy utilization and biosynthesis capacity. A large number of transporters, carbohydrate-active enzymes and protein-degradation related genes have been annotated in the genome of strain HW001<sup>T</sup>. In addition, a series of important metabolic pathways, such as peptidoglycan biosynthesis, osmotic stress response system and multifunctional quorum sensing were annotated, which may confer the ability to adapt to various unfavorable environmental conditions. Finally, the evolutionary history of strain HW001<sup>T</sup> was reconstructed and the horizontal transfer of genes was predicted, indicating that the adaptation of <i>P. aggregans</i> to a changing marine environment depends on the evolution of their metabolic capabilities, especially in signal transmission. In conclusion, the results of this study provide genomic information for revealing the adaptive mechanism of strain HW001<sup>T</sup> to the changing ancient oceans.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00164-3.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 1","pages":"12-27"},"PeriodicalIF":5.7,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9440770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of sex determination in crustaceans. 甲壳动物性别决定的进化。
IF 5.8 2区 生物学
Marine Life Science & Technology Pub Date : 2023-02-22 eCollection Date: 2023-02-01 DOI: 10.1007/s42995-023-00163-4
Zhiqiang Ye, Trent Bishop, Yaohai Wang, Ryan Shahriari, Michael Lynch
{"title":"Evolution of sex determination in crustaceans.","authors":"Zhiqiang Ye, Trent Bishop, Yaohai Wang, Ryan Shahriari, Michael Lynch","doi":"10.1007/s42995-023-00163-4","DOIUrl":"10.1007/s42995-023-00163-4","url":null,"abstract":"<p><p>Sex determination (SD) involves mechanisms that determine whether an individual will develop into a male, female, or in rare cases, hermaphrodite. Crustaceans harbor extremely diverse SD systems, including hermaphroditism, environmental sex determination (ESD), genetic sex determination (GSD), and cytoplasmic sex determination (e.g., <i>Wolbachia</i> controlled SD systems). Such diversity lays the groundwork for researching the evolution of SD in crustaceans, i.e., transitions among different SD systems. However, most previous research has focused on understanding the mechanism of SD within a single lineage or species, overlooking the transition across different SD systems. To help bridge this gap, we summarize the understanding of SD in various clades of crustaceans, and discuss how different SD systems might evolve from one another. Furthermore, we review the genetic basis for transitions between different SD systems (i.e., <i>Dmrt</i> genes) and propose the microcrustacean <i>Daphnia</i> (clade Branchiopoda) as a model to study the transition from ESD to GSD.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 1","pages":"1-11"},"PeriodicalIF":5.8,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9384079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信