Chemical & Biomedical Imaging最新文献

筛选
英文 中文
Peptide PET Imaging: A Review of Recent Developments and a Look at the Future of Radiometal-Labeled Peptides in Medicine. 多肽 PET 成像:多肽正电子发射计算机断层成像:最新发展综述及放射性同位素标记多肽在医学中的未来展望》(Peptide PET Imaging: A Review of Recent Developments and a Look at the Future of Radiometal-Labeled Peptides in Medicine.
Chemical & Biomedical Imaging Pub Date : 2024-08-23 eCollection Date: 2024-09-23 DOI: 10.1021/cbmi.4c00030
Majed Shabsigh, Lee A Solomon
{"title":"Peptide PET Imaging: A Review of Recent Developments and a Look at the Future of Radiometal-Labeled Peptides in Medicine.","authors":"Majed Shabsigh, Lee A Solomon","doi":"10.1021/cbmi.4c00030","DOIUrl":"https://doi.org/10.1021/cbmi.4c00030","url":null,"abstract":"<p><p>The development of peptide-based, radiometal-labeled PET imaging agents has seen an increase in attention due to the favorable properties the peptide backbone exhibits. These include high selectivity and affinity to proteins and cells directly linked to various types of cancers. In addition, rapid clearance from circulation and low toxicity allow for unique approaches to engineering a viable peptide-based imaging agent. Utilizing peptides as the backbone allows for various modifications to improve metabolic stability, target cell affinity, and image quality and imaging capabilities and reduce toxicity. Select radiolabeled peptides have already been FDA approved, with many more in late-stage trials. This review summarizes the current state of the radiometal-labeled PET peptide imaging field as well as explores methods used by researchers to modify peptides, concluding with a look at the future of peptide-based therapy and diagnostics.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 9","pages":"615-630"},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503725/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142548911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peptide PET Imaging: A Review of Recent Developments and a Look at the Future of Radiometal-Labeled Peptides in Medicine 多肽 PET 成像:近期发展回顾与放射性同位素标记肽在医学中的未来展望
Chemical & Biomedical Imaging Pub Date : 2024-08-22 DOI: 10.1021/cbmi.4c0003010.1021/cbmi.4c00030
Majed Shabsigh,  and , Lee A. Solomon*, 
{"title":"Peptide PET Imaging: A Review of Recent Developments and a Look at the Future of Radiometal-Labeled Peptides in Medicine","authors":"Majed Shabsigh,&nbsp; and ,&nbsp;Lee A. Solomon*,&nbsp;","doi":"10.1021/cbmi.4c0003010.1021/cbmi.4c00030","DOIUrl":"https://doi.org/10.1021/cbmi.4c00030https://doi.org/10.1021/cbmi.4c00030","url":null,"abstract":"<p >The development of peptide-based, radiometal-labeled PET imaging agents has seen an increase in attention due to the favorable properties the peptide backbone exhibits. These include high selectivity and affinity to proteins and cells directly linked to various types of cancers. In addition, rapid clearance from circulation and low toxicity allow for unique approaches to engineering a viable peptide-based imaging agent. Utilizing peptides as the backbone allows for various modifications to improve metabolic stability, target cell affinity, and image quality and imaging capabilities and reduce toxicity. Select radiolabeled peptides have already been FDA approved, with many more in late-stage trials. This review summarizes the current state of the radiometal-labeled PET peptide imaging field as well as explores methods used by researchers to modify peptides, concluding with a look at the future of peptide-based therapy and diagnostics.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 9","pages":"615–630 615–630"},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA-FRET Constructs Enable Multiplexed Fluorescence Detection at the Single-Molecule Level DNA-FRET 构建可实现单分子水平的多重荧光检测
Chemical & Biomedical Imaging Pub Date : 2024-08-08 DOI: 10.1021/cbmi.4c0005410.1021/cbmi.4c00054
Juan Wang,  and , Hanyang Yu*, 
{"title":"DNA-FRET Constructs Enable Multiplexed Fluorescence Detection at the Single-Molecule Level","authors":"Juan Wang,&nbsp; and ,&nbsp;Hanyang Yu*,&nbsp;","doi":"10.1021/cbmi.4c0005410.1021/cbmi.4c00054","DOIUrl":"https://doi.org/10.1021/cbmi.4c00054https://doi.org/10.1021/cbmi.4c00054","url":null,"abstract":"","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 9","pages":"592–594 592–594"},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Milk Exosome-Glow Nanosystem for Cancer Cellular and Tissue Bioimaging. 用于癌症细胞和组织生物成像的牛奶外泌体-光纳米系统。
Chemical & Biomedical Imaging Pub Date : 2024-08-07 eCollection Date: 2024-10-28 DOI: 10.1021/cbmi.4c00040
Nycol M Cotto, Neeraj Chauhan, Benilde Adriano, Deepak S Chauhan, Marco Cabrera, Subhash C Chauhan, Murali M Yallapu
{"title":"Milk Exosome-Glow Nanosystem for Cancer Cellular and Tissue Bioimaging.","authors":"Nycol M Cotto, Neeraj Chauhan, Benilde Adriano, Deepak S Chauhan, Marco Cabrera, Subhash C Chauhan, Murali M Yallapu","doi":"10.1021/cbmi.4c00040","DOIUrl":"10.1021/cbmi.4c00040","url":null,"abstract":"<p><p>Milk-derived exosomes are widely used for diagnosis, delivery, imaging, and theranostic applications. Near-Infrared (NIR) based fluorescence bioimaging is an attractive and safer technique that is used for clinical applications. However, almost all NIR imaging agents tend to have poor photostability, short half-life, nonspecific protein binding, and concentration-dependent aggregation(s). Therefore, there is an unmet clinical need to develop newer and safer modalities to package and deliver NIR imaging agents. Bovine milk exosomes are natural, biocompatible, safe, and efficient nanocarriers that facilitate the delivery of micro- and macromolecules. Herein, we developed an exosome-based NIR dye loaded nanoimaging formulation that offers improved solubility and photostability of NIR dye. Following the acetic acid based extracellular vesicle (EV) treatment method, we extracted the bovine milk exosomes from a variety of pasteurized grade milk. The EVs were screened for their physicochemical properties such as particle size and concentration and zeta potential. The stability of these exosomes was also determined under different conditions, including storage temperatures, pH, and salt concentrations. Next, indocyanine green, a model NIR dye was loaded into these exosomes (Exo-Glow) via a sonication method and further assessed for their improved fluorescence intensity and photostability using an IVIS imaging system. Initial screening suggested that size of the selected bovine milk exosomes was ∼100-135 nm with an average particle concentration of 5.8 × 10<sup>2</sup> particles/mL. Exo-Glow further demonstrated higher fluorescence intensity in cancer cells and tissues when compared to free dye. These results showed that Exo-Glow has the potential to serve as a safer NIR imaging tool for cancer cells/tissues.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 10","pages":"711-720"},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522989/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Milk Exosome-Glow Nanosystem for Cancer Cellular and Tissue Bioimaging 用于癌症细胞和组织生物成像的牛奶外泌体-光纳米系统
Chemical & Biomedical Imaging Pub Date : 2024-08-07 DOI: 10.1021/cbmi.4c0004010.1021/cbmi.4c00040
Nycol M. Cotto, Neeraj Chauhan, Benilde Adriano, Deepak S. Chauhan, Marco Cabrera, Subhash C. Chauhan and Murali M. Yallapu*, 
{"title":"Milk Exosome-Glow Nanosystem for Cancer Cellular and Tissue Bioimaging","authors":"Nycol M. Cotto,&nbsp;Neeraj Chauhan,&nbsp;Benilde Adriano,&nbsp;Deepak S. Chauhan,&nbsp;Marco Cabrera,&nbsp;Subhash C. Chauhan and Murali M. Yallapu*,&nbsp;","doi":"10.1021/cbmi.4c0004010.1021/cbmi.4c00040","DOIUrl":"https://doi.org/10.1021/cbmi.4c00040https://doi.org/10.1021/cbmi.4c00040","url":null,"abstract":"<p >Milk-derived exosomes are widely used for diagnosis, delivery, imaging, and theranostic applications. Near-Infrared (NIR) based fluorescence bioimaging is an attractive and safer technique that is used for clinical applications. However, almost all NIR imaging agents tend to have poor photostability, short half-life, nonspecific protein binding, and concentration-dependent aggregation(s). Therefore, there is an unmet clinical need to develop newer and safer modalities to package and deliver NIR imaging agents. Bovine milk exosomes are natural, biocompatible, safe, and efficient nanocarriers that facilitate the delivery of micro- and macromolecules. Herein, we developed an exosome-based NIR dye loaded nanoimaging formulation that offers improved solubility and photostability of NIR dye. Following the acetic acid based extracellular vesicle (EV) treatment method, we extracted the bovine milk exosomes from a variety of pasteurized grade milk. The EVs were screened for their physicochemical properties such as particle size and concentration and zeta potential. The stability of these exosomes was also determined under different conditions, including storage temperatures, pH, and salt concentrations. Next, indocyanine green, a model NIR dye was loaded into these exosomes (Exo-Glow) via a sonication method and further assessed for their improved fluorescence intensity and photostability using an IVIS imaging system. Initial screening suggested that size of the selected bovine milk exosomes was ∼100–135 nm with an average particle concentration of 5.8 × 10<sup>2</sup> particles/mL. Exo-Glow further demonstrated higher fluorescence intensity in cancer cells and tissues when compared to free dye. These results showed that Exo-Glow has the potential to serve as a safer NIR imaging tool for cancer cells/tissues.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 10","pages":"711–720 711–720"},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142517319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonemissive Iridium(III) Solvent Complex as a Self-Reporting Photosensitizer for Monitoring Phototherapeutic Efficacy in a "Signal on" Mode. 非发射型铱(III)溶剂配合物作为自报告光敏剂,在“信号开启”模式下监测光疗效果。
Chemical & Biomedical Imaging Pub Date : 2024-08-01 eCollection Date: 2024-12-23 DOI: 10.1021/cbmi.4c00042
Manping Qian, Ke Wang, Peng Yang, Yu Liu, Meng Li, Chengxiao Zhang, Honglan Qi
{"title":"Nonemissive Iridium(III) Solvent Complex as a Self-Reporting Photosensitizer for Monitoring Phototherapeutic Efficacy in a \"Signal on\" Mode.","authors":"Manping Qian, Ke Wang, Peng Yang, Yu Liu, Meng Li, Chengxiao Zhang, Honglan Qi","doi":"10.1021/cbmi.4c00042","DOIUrl":"10.1021/cbmi.4c00042","url":null,"abstract":"<p><p>Photodynamic therapy (PDT) has long been receiving increasing attention for the minimally invasive treatment of cancer. The performance of PDT depends on the photophysical and biological properties of photosensitizers (PSs). The always-on fluorescence signal of conventional PSs makes it difficult to real-time monitor phototherapeutic efficacy in the PDT process. Therefore, functional PSs with good photodynamic therapy effect and self-reporting properties are highly desired. Here, two nonemissive iridium(III) solvent complexes, [(dfppy)<sub>2</sub>Ir(DMSO)]Cl (Ir-DMSO, dfppy = 2,4-difluorophenyl)pyridine, DMSO = dimethyl sulfoxide) and [(dfppy)<sub>2</sub>Ir(ACN)]Cl (Ir-ACN, ACN = acetonitrile) as PSs, were synthesized. Both of them exhibit intense high-energy absorption bands, low photoluminescence (PL) emission, and low dark toxicity. Thanks to the lower dark toxicity of Ir-DMSO, we chose it as a PS for further PDT. In this work, Ir-DMSO functions as a specific PL \"signal on\" PS for self-reporting therapeutic efficacy during its own PDT process. Colocalization experiments indicated that Ir-DMSO accumulated in the endoplasmic reticulum and mitochondria. Under light irradiation, Ir-DMSO not only exhibited the ability to kill cancer cells but also presented a \"signal on\" PL response toward cell death. During Ir-DMSO-induced PDT, cell death modality was further investigated and immunogenic cell death was revealed, in which main hallmarks, including ROS generation, upregulation of surface-exposed calreticulin, high-mobility group box 1, and adenosine triphosphate secretion, were observed. Thanks to the specific coordination reaction between Ir-DMSO and histidine (His)/His-containing proteins, the phototherapeutic efficacy can be monitored in real time without other signal probes. This work provides a new and promising strategy for the development of PSs with self-reporting ability, which is of great importance for imaging-guided PDT.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 12","pages":"808-816"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonemissive Iridium(III) Solvent Complex as a Self-Reporting Photosensitizer for Monitoring Phototherapeutic Efficacy in a “Signal on” Mode 非发射型铱(III)溶剂配合物作为自报告光敏剂,在“信号开启”模式下监测光疗效果
Chemical & Biomedical Imaging Pub Date : 2024-08-01 DOI: 10.1021/cbmi.4c0004210.1021/cbmi.4c00042
Manping Qian, Ke Wang, Peng Yang, Yu Liu, Meng Li*, Chengxiao Zhang and Honglan Qi*, 
{"title":"Nonemissive Iridium(III) Solvent Complex as a Self-Reporting Photosensitizer for Monitoring Phototherapeutic Efficacy in a “Signal on” Mode","authors":"Manping Qian,&nbsp;Ke Wang,&nbsp;Peng Yang,&nbsp;Yu Liu,&nbsp;Meng Li*,&nbsp;Chengxiao Zhang and Honglan Qi*,&nbsp;","doi":"10.1021/cbmi.4c0004210.1021/cbmi.4c00042","DOIUrl":"https://doi.org/10.1021/cbmi.4c00042https://doi.org/10.1021/cbmi.4c00042","url":null,"abstract":"<p >Photodynamic therapy (PDT) has long been receiving increasing attention for the minimally invasive treatment of cancer. The performance of PDT depends on the photophysical and biological properties of photosensitizers (PSs). The always-on fluorescence signal of conventional PSs makes it difficult to real-time monitor phototherapeutic efficacy in the PDT process. Therefore, functional PSs with good photodynamic therapy effect and self-reporting properties are highly desired. Here, two nonemissive iridium(III) solvent complexes, [(dfppy)<sub>2</sub>Ir(DMSO)]Cl (Ir-DMSO, dfppy = 2,4-difluorophenyl)pyridine, DMSO = dimethyl sulfoxide) and [(dfppy)<sub>2</sub>Ir(ACN)]Cl (Ir-ACN, ACN = acetonitrile) as PSs, were synthesized. Both of them exhibit intense high-energy absorption bands, low photoluminescence (PL) emission, and low dark toxicity. Thanks to the lower dark toxicity of Ir-DMSO, we chose it as a PS for further PDT. In this work, Ir-DMSO functions as a specific PL “signal on” PS for self-reporting therapeutic efficacy during its own PDT process. Colocalization experiments indicated that Ir-DMSO accumulated in the endoplasmic reticulum and mitochondria. Under light irradiation, Ir-DMSO not only exhibited the ability to kill cancer cells but also presented a “signal on” PL response toward cell death. During Ir-DMSO-induced PDT, cell death modality was further investigated and immunogenic cell death was revealed, in which main hallmarks, including ROS generation, upregulation of surface-exposed calreticulin, high-mobility group box 1, and adenosine triphosphate secretion, were observed. Thanks to the specific coordination reaction between Ir-DMSO and histidine (His)/His-containing proteins, the phototherapeutic efficacy can be monitored in real time without other signal probes. This work provides a new and promising strategy for the development of PSs with self-reporting ability, which is of great importance for imaging-guided PDT.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 12","pages":"808–816 808–816"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cervical Cancer Tissue Analysis Using Photothermal Midinfrared Spectroscopic Imaging. 利用光热中红外光谱成像分析宫颈癌组织
Chemical & Biomedical Imaging Pub Date : 2024-07-31 eCollection Date: 2024-09-23 DOI: 10.1021/cbmi.4c00031
Reza Reihanisaransari, Chalapathi Charan Gajjela, Xinyu Wu, Ragib Ishrak, Yanping Zhong, David Mayerich, Sebastian Berisha, Rohith Reddy
{"title":"Cervical Cancer Tissue Analysis Using Photothermal Midinfrared Spectroscopic Imaging.","authors":"Reza Reihanisaransari, Chalapathi Charan Gajjela, Xinyu Wu, Ragib Ishrak, Yanping Zhong, David Mayerich, Sebastian Berisha, Rohith Reddy","doi":"10.1021/cbmi.4c00031","DOIUrl":"10.1021/cbmi.4c00031","url":null,"abstract":"<p><p>Hyperspectral photothermal mid-infrared spectroscopic imaging (HP-MIRSI) is an emerging technology with promising applications in cervical cancer diagnosis and quantitative, label-free histopathology. This study pioneers the application of HP-MIRSI to the evaluation of clinical cervical cancer tissues, achieving excellent tissue type segmentation accuracy of over 95%. This achievement stems from an integrated approach of optimized data acquisition, computational data reconstruction, and the application of machine learning algorithms. The results are statistically robust, drawing from tissue samples of 98 cervical cancer patients and incorporating over 40 million data points. Traditional cervical cancer diagnosis methods entail biopsy, staining, and visual evaluation by a pathologist. This process is qualitative, subject to variations in staining and subjective interpretations, and requires extensive tissue processing, making it costly and time-consuming. In contrast, our proposed alternative can produce images comparable to those from histological analyses without the need for staining or complex sample preparation. This label-free, quantitative method utilizes biochemical data from HP-MIRSI and employs machine-learning algorithms for the rapid and precise segmentation of cervical tissue subtypes. This approach can potentially transform histopathological analysis by offering a more accurate and label-free alternative to conventional diagnostic processes.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 9","pages":"651-658"},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cervical Cancer Tissue Analysis Using Photothermal Midinfrared Spectroscopic Imaging 利用光热中红外光谱成像分析宫颈癌组织
Chemical & Biomedical Imaging Pub Date : 2024-07-31 DOI: 10.1021/cbmi.4c0003110.1021/cbmi.4c00031
Reza Reihanisaransari, Chalapathi Charan Gajjela, Xinyu Wu, Ragib Ishrak, Yanping Zhong, David Mayerich, Sebastian Berisha and Rohith Reddy*, 
{"title":"Cervical Cancer Tissue Analysis Using Photothermal Midinfrared Spectroscopic Imaging","authors":"Reza Reihanisaransari,&nbsp;Chalapathi Charan Gajjela,&nbsp;Xinyu Wu,&nbsp;Ragib Ishrak,&nbsp;Yanping Zhong,&nbsp;David Mayerich,&nbsp;Sebastian Berisha and Rohith Reddy*,&nbsp;","doi":"10.1021/cbmi.4c0003110.1021/cbmi.4c00031","DOIUrl":"https://doi.org/10.1021/cbmi.4c00031https://doi.org/10.1021/cbmi.4c00031","url":null,"abstract":"<p >Hyperspectral photothermal mid-infrared spectroscopic imaging (HP-MIRSI) is an emerging technology with promising applications in cervical cancer diagnosis and quantitative, label-free histopathology. This study pioneers the application of HP-MIRSI to the evaluation of clinical cervical cancer tissues, achieving excellent tissue type segmentation accuracy of over 95%. This achievement stems from an integrated approach of optimized data acquisition, computational data reconstruction, and the application of machine learning algorithms. The results are statistically robust, drawing from tissue samples of 98 cervical cancer patients and incorporating over 40 million data points. Traditional cervical cancer diagnosis methods entail biopsy, staining, and visual evaluation by a pathologist. This process is qualitative, subject to variations in staining and subjective interpretations, and requires extensive tissue processing, making it costly and time-consuming. In contrast, our proposed alternative can produce images comparable to those from histological analyses without the need for staining or complex sample preparation. This label-free, quantitative method utilizes biochemical data from HP-MIRSI and employs machine-learning algorithms for the rapid and precise segmentation of cervical tissue subtypes. This approach can potentially transform histopathological analysis by offering a more accurate and label-free alternative to conventional diagnostic processes.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 9","pages":"651–658 651–658"},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Correlation Increases Sampling in Diffusion-Based Super-Resolution Optical Fluctuation Imaging. 交叉相关提高基于扩散的超分辨率光学波动成像的采样率
Chemical & Biomedical Imaging Pub Date : 2024-07-30 eCollection Date: 2024-09-23 DOI: 10.1021/cbmi.4c00032
Jeanpun Antarasen, Benjamin Wellnitz, Stephanie N Kramer, Surajit Chatterjee, Lydia Kisley
{"title":"Cross-Correlation Increases Sampling in Diffusion-Based Super-Resolution Optical Fluctuation Imaging.","authors":"Jeanpun Antarasen, Benjamin Wellnitz, Stephanie N Kramer, Surajit Chatterjee, Lydia Kisley","doi":"10.1021/cbmi.4c00032","DOIUrl":"10.1021/cbmi.4c00032","url":null,"abstract":"<p><p>Correlation signal processing of optical three-dimensional (<i>x</i>, <i>y</i>, <i>t</i>) data can produce super-resolution images. The second-order cross-correlation function <i>XC</i> <sub>2</sub> has been documented to produce super-resolution imaging with static and blinking emitters but not for diffusing emitters. Here, we both analytically and numerically demonstrate cross-correlation analysis for diffusing particles. We then expand our fluorescence correlation spectroscopy super-resolution optical fluctuation imaging (fcsSOFI) analysis to use cross-correlation as a postprocessing computational technique to extract both dynamic and structural information on particle diffusion in nanoscale structures simultaneously. Cross-correlation maintains the same super-resolution as auto-correlation while also increasing the sampling rates to reduce aliasing for spatial information in both simulated and experimental data. Our work demonstrates how fcsSOFI with cross-correlation can be a powerful signal-processing tool to resolve the nanoscale dynamics and structure in samples relevant to biological and soft materials.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 9","pages":"640-650"},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信