Going Above and Beyond: Achieving High Contrast and Higher Offset through Carbon Dot-Based diaCEST MRI Contrast Agent

Shalini Pandey,  and , Arindam Ghosh*, 
{"title":"Going Above and Beyond: Achieving High Contrast and Higher Offset through Carbon Dot-Based diaCEST MRI Contrast Agent","authors":"Shalini Pandey,&nbsp; and ,&nbsp;Arindam Ghosh*,&nbsp;","doi":"10.1021/cbmi.4c0008610.1021/cbmi.4c00086","DOIUrl":null,"url":null,"abstract":"<p >Diamagnetic CEST (diaCEST) MRI contrast agents (CAs) have recently gained immense popularity by virtue of the fact that contrast can be switched on or off by merely changing a few experimental parameters, even after the agent is administered. However, the low efficiency and small solute–solvent offset of the contrast-generating exchangeable protons have so far prevented them from becoming a practical option for in vivo applications. Low efficiency demands high dosage, while small offset invites unwanted interference from the endogenous metabolites present in the human body. So far, the strategy for finding efficient diaCEST CAs involved searching for suitable molecules in which the exchangeable protons resonate as far as possible from water and have an optimum exchange rate. Very little effort has been devoted toward designing or converting to an efficient one from a less efficient existing CA. It was recently shown that hydrothermally synthesized carbon nanodots (CDs) have the ability to enhance contrast efficiency and to tune the pH response of certain diaCEST CAs. Here we show that a suitable combination of the synthesis technique and synthesis parameters can simultaneously enhance solute–solvent offset and contrast efficiency. In particular, we demonstrate 300% enhancement in offset and 100% enhancement in efficiency following the formation of carbon-dots from a urea–citric acid mixture.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 2","pages":"123–131 123–131"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00086","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.4c00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diamagnetic CEST (diaCEST) MRI contrast agents (CAs) have recently gained immense popularity by virtue of the fact that contrast can be switched on or off by merely changing a few experimental parameters, even after the agent is administered. However, the low efficiency and small solute–solvent offset of the contrast-generating exchangeable protons have so far prevented them from becoming a practical option for in vivo applications. Low efficiency demands high dosage, while small offset invites unwanted interference from the endogenous metabolites present in the human body. So far, the strategy for finding efficient diaCEST CAs involved searching for suitable molecules in which the exchangeable protons resonate as far as possible from water and have an optimum exchange rate. Very little effort has been devoted toward designing or converting to an efficient one from a less efficient existing CA. It was recently shown that hydrothermally synthesized carbon nanodots (CDs) have the ability to enhance contrast efficiency and to tune the pH response of certain diaCEST CAs. Here we show that a suitable combination of the synthesis technique and synthesis parameters can simultaneously enhance solute–solvent offset and contrast efficiency. In particular, we demonstrate 300% enhancement in offset and 100% enhancement in efficiency following the formation of carbon-dots from a urea–citric acid mixture.

超越:通过碳点为基础的diaCEST MRI造影剂实现高对比度和更高偏移
抗磁性CEST (diaCEST) MRI造影剂(CAs)最近获得了极大的普及,因为它可以通过仅仅改变几个实验参数来打开或关闭造影剂,甚至在使用造影剂之后。然而,到目前为止,产生对比的可交换质子的低效率和小的溶质-溶剂偏移阻碍了它们成为体内应用的实际选择。低效率需要高剂量,而小偏移会引起人体内内源性代谢物的不必要干扰。到目前为止,寻找高效diaCEST CAs的策略包括寻找合适的分子,使可交换质子尽可能远离水并具有最佳交换速率。很少有人致力于从效率较低的现有CA设计或转化为高效的CA。最近的研究表明,水热合成的碳纳米点(CDs)具有提高对比度效率和调节某些diaCEST CAs的pH响应的能力。研究表明,适当的合成工艺和合成参数组合可以同时提高溶剂-溶质偏移和对比效率。特别是,我们证明了在尿素-柠檬酸混合物形成碳点后,胶印机的效果提高了300%,效率提高了100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信