{"title":"The impact of radio–green light interaction on hydrogen evolution reaction inhibition of carbon based electrophotocatalyst","authors":"Purnami Purnami , Willy Satrio Nugroho , I.N.G. Wardana , Avita Ayu Permanasari , Sukarni Sukarni , Indra Mamad Gandidi , Tuan Amran Tuan Abdullah , Anwar Johari","doi":"10.1016/j.crcon.2025.100308","DOIUrl":"10.1016/j.crcon.2025.100308","url":null,"abstract":"<div><div>This study investigates the effects of radio wave frequencies (470 MHz, 670 MHz, and 870 MHz) on hydrogen evolution reaction (HER) during water electrolysis using activated charcoal as an electrophotocatalyst. The results reveal that a frequency of 870 MHz produced the highest hydrogen concentration (7775 ppm), followed by 670 MHz (7016 ppm), and 470 MHz (4219 ppm). In contrast, electrolysis without radio frequency application resulted in 8271 ppm of hydrogen suggests the interaction between radio and light interaction inhibits hydrogen production. FTIR analysis identified multiple functional groups on the activated charcoal surface, including OH, C=O, and C-Cl, which influence the material’s interaction with electromagnetic fields. SEM and EDS characterizations revealed a hierarchical porous microstructure with elemental inclusions such as Si, Al, and Cl that contribute to surface polarization. This study proposes that surface plasmon resonance (SPR) is induced by metal impurities on the activated chcarcoal surface, enhancing the local electric field and improving HER. The complex interaction of functional groups, elemental composition, and radio waves offers insights into optimizing activated charcoal for improved HER efficiency.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 3","pages":"Article 100308"},"PeriodicalIF":6.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bo Tong , Liu Yan , Jingzhong Xu , Kun Wang , Ting-an Zhang
{"title":"Mechanism of pore formation in copper slag reduction: A clarification combining experiments and simulation","authors":"Bo Tong , Liu Yan , Jingzhong Xu , Kun Wang , Ting-an Zhang","doi":"10.1016/j.crcon.2025.100307","DOIUrl":"10.1016/j.crcon.2025.100307","url":null,"abstract":"<div><div>Copper slag still contains a large amount of iron resources after flotation, and direct storage is a serious waste of resources. Direct Reduced Iron(DRI) are prepared by reduction of copper slag which requires a large amount of fossil energy and emits carbon largely. In this work, straw and straw charcoal were used as reducing agents to reduce flotation copper slag to prepare DRI. The pore model of the DRI was constructed via micro/nano stimulation, and the direct reduction kinetic characteristics of the biomass copper slag composite pellets were analyzed. The results show that the addition of straw is beneficial for the direct reduction of copper slag. The straw is pyrolyzed to produce a reducing pyrolysis gas to prereduce the pellets while leaving pores to improve the kinetic conditions for the subsequent direct reduction of copper slag. Compared with traditional fossil fuels such as anthracite, the metallization rate of DRI prepared with straw and straw charcoal as reducing agents to reduce copper slag increased from 85 % to 96.54 %. This process can reduce carbon emissions by 0.26 ∼ 0.52 t per ton of molten iron. This study proposes a feasible, low-carbon and efficient flotation copper slag treatment method that can fully recover the iron resources in flotation copper slag and solve the industry problem that flotation copper slag can be stored and disposed of only. It is helpful to promote the organic combination of nonblast furnace ironmaking, the comprehensive utilization of copper slag and the comprehensive utilization of biomass resources.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 3","pages":"Article 100307"},"PeriodicalIF":6.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144614340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuejing Liu , Jiaqi Xie , Xiyan Li , Shuai Xu , Hong Zhang , Xin Jia , Guangwen Xu
{"title":"Isotope-tagging atmosphere to characterize carbonate ore decomposition reaction in carbon dioxide","authors":"Xuejing Liu , Jiaqi Xie , Xiyan Li , Shuai Xu , Hong Zhang , Xin Jia , Guangwen Xu","doi":"10.1016/j.crcon.2025.100306","DOIUrl":"10.1016/j.crcon.2025.100306","url":null,"abstract":"<div><div>This study utilizes a combination of micro fluidized bed analysis technology and isotope-tagging methodology to investigate the decomposition of carbonate ores in CO<sub>2</sub> atmospheres. Utilizing the decomposition of magnesite in an atmosphere containing <sup>13</sup>CO<sub>2</sub> as a case study, the reaction behavior and kinetics were investigated using a micro fluidized bed reaction analyzer (MFBRA). The results reveal that <sup>13</sup>CO<sub>2</sub> in the atmosphere hinders the decomposition process, thereby increasing the time required for complete decomposition. The activation energy was observed to increase with the concentration of <sup>13</sup>CO<sub>2</sub> in the reaction atmosphere. Compared to the results obtained from thermogravimetric analysis (TG), the activation energy and pre-exponential factor values determined by the MFBRA are lower. Due to the excessive suppression caused by the accumulation of product gas within the sample crucible, the apparent activation energy calculated based on TG data was overestimated, particularly in atmospheres containing the product gas CO<sub>2</sub>. The MFBRA, operating in an environment characterized by essentially eliminated external gas diffusion, extensive gas–solid mixing, and high rates of mass and heat transfer, has proven to be highly capable of accurately determining the kinetics of carbonate ore decomposition in CO<sub>2</sub>-rich atmospheres. This study provides a straightforward and reliable method for elucidating the reaction characteristics and kinetics of carbonate ore decomposition in atmosphere of CO<sub>2</sub>.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 3","pages":"Article 100306"},"PeriodicalIF":6.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144606004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One step preparation of papyrus culm derived activated biochar using partial air oxidation and its use as a filter for water treatment in aquaponics culture","authors":"Sumrit Mopoung, Suthasinee Pantho","doi":"10.1016/j.crcon.2025.100305","DOIUrl":"10.1016/j.crcon.2025.100305","url":null,"abstract":"<div><div>Papyrus culm derived activated biochars were prepared through carbonization and air oxidation at 400–600 °C. The activated biochars were analyzed by SEM-EDS, FT-IR, Raman, BET, and XRD techniques. The best product was collected for use as filter material in aquaponics. It was found that the activated biochars have diverse properties with high disorder of graphitic, oxygenated functional groups (OH, C=O, C-O, and Si-O), oxide compounds (CaO, MgO, Na<sub>2</sub>O, K<sub>2</sub>O, SiO<sub>2</sub>), and relatively high specific surface area and micropore volume. These parameters increased with increasing carbonization temperature from 400 °C to 600 °C. For materials produced at 600 °C the pore size of the derived activated biochar falls in the range of micropores (<2 nm), with a small mesopore and macropore content. This product has BET specific surface area of 270.27 m<sup>2</sup>/g. Utilizing the derived activated biochar prepared with carbonization at 600 °C for aquaponics culture has shown that the values of total NH<sub>3</sub>, NO<sub>2</sub><sup>–</sup>, NO<sub>3</sub><sup>–</sup>, PO<sub>4</sub><sup>3-</sup>, and turbidity decreased, while the DO content increased in the water of the aquaponics culture with efficiency percentage values of 33.33–35.90 %, 4.93–13.43 %, 9.15–12.90 %, 34.97–43.04 %, 10.23–23.90 %, and 16.86–23.90 %, respectively, throughout the four weeks of the experiment. This was achieved via electrostatic attraction, exchangeable cation and anion attraction, and filtration. Furthermore, the activated biochar could also maintain the water pH in a relatively alkaline range for the duration of the experiment, which is suitable for cultivating tilapia and growing red oak lettuce. However, the activated biochar filter began to reach sorption saturation during the third week of the experiment. Therefore, the activated biochar filter should be replaced with a new one after four weeks of use. This research has shown that activated biochar from papyrus culm can be a candidate for an adsorbent material with a simple, cost-effective, and timesaving production.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 3","pages":"Article 100305"},"PeriodicalIF":6.4,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144611855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved performance of a direct methanol fuel cell by the highly-developed mesopores of the carbon nanofibers catalyst support","authors":"He Gao , Hirokazu Ishitobi , Nobuyoshi Nakagawa","doi":"10.1016/j.crcon.2025.100304","DOIUrl":"10.1016/j.crcon.2025.100304","url":null,"abstract":"<div><div>A prepared carbon nanofibers with mesopores (P-CNFs) by electrospinning utilizing polystyrene (PS) and polyacrylonitrile (PAN) as the pore-forming agent and carbon matrix, respectively, to obtain a thinner catalyst layer which has an enhanced reaction activity for use in a direct methanol fuel cell (DMFC). A PS to PAN mass ratio of 1.00 yielded the highest mesopore volume with an average pore radius of 4.7 nm. PtRu and TiO<sub>2</sub> nanoparticles were coated on the P-CNFs, producing PtRu/P-TCCNFs, and used in a DMFC. The electrochemically active surface area (ECSA) of the PtRu/P-TCCNFs significantly surpassed that of the nonporous carbon nanofibers (PtRu/TCCNFs) and was nearly twice that of the commercially available catalyst, PtRu/C. The improvement of the ECSA value is mainly due to the increased surface area in the mesopore region that facilitates the catalyst nanoparticle dispersion thus preventing agglomeration. Consequently, the methanol oxidation reaction (MOR) mass activity of PtRu(32)/P-TCCNFs reached 438 mA/mg<sub>-PtRu,</sub> exceeding that of PtRu(32)/TCCNFs and PtRu/C by 1.27 and 4.56 times, respectively. Furthermore, PtRu(32)/P-TCCNFs demonstrated a superior DMFC performance attributed to the thinner catalyst layer with the increased reaction site density and the reduced ohmic resistance, thus yielding a higher maximum power density.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 3","pages":"Article 100304"},"PeriodicalIF":6.4,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144606005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing ethanol dehydration through optimized WO3 loading on activated carbon and montmorillonite clay catalysts","authors":"Chaowat Autthanit , Sasiradee Jantasee , Jirayu Liewchalermwong , Narathip Thubthun , Supachai Jadsadajerm , Piyasan Praserthdam , Bunjerd Jongsomjit","doi":"10.1016/j.crcon.2025.100303","DOIUrl":"10.1016/j.crcon.2025.100303","url":null,"abstract":"<div><div>The objective of this study is to investigate the utilization of tungsten oxide (WO<sub>3</sub>) supported on natural materials, including activated carbon (AC) and montmorillonite clay (MMT), for the catalytic dehydration of ethanol. This study addresses the growing demand for sustainable chemical processes that produce key intermediates, such as ethylene and diethyl ether, from renewable resources. The research examined the effect of varying WO<sub>3</sub> loadings on catalyst performance using the incipient wetness impregnation method. The physicochemical properties of catalysts were elucidated through a variety of characterization techniques. The results revealed that MMT supports exhibited a more significant enhancement in catalytic efficiency compared to AC when loaded with W. This superior performance is attributed to MMT’s unique layered structure, enabling efficient dispersion of tungsten species and optimized acid site distribution. The structural properties of the support and the higher density of weak acid sites were found to significantly influence catalytic activity. The 13.5WMMT catalyst demonstrated remarkable dual functionality, achieving 42.63 % diethyl ether yield at 250 °C and 96.73 % ethylene yield at 400 °C. In contrast, the 13.5WAC catalyst produced only 22.30 % diethyl ether yield at 300 °C and 77.02 % ethylene yield at 400 °C. The study not only underscores the significance of metal loading and support type in achieving superior catalytic performance, but also highlights the exceptional potential of MMT as a promising candidate for sustainable and efficient ethanol dehydration processes.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 1","pages":"Article 100303"},"PeriodicalIF":6.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fathima Ali Kayakool , Harita Pant , Menestreau Paul , Glaydson Simões Dos Reis , Gopinathan Manavalan , Vadali Venkata Satya Siva Srikanth , Mikael Thyrel , Shaikshavali Petnikota
{"title":"Mesoporous carbon derived from lignin sulfonate as a sustainable cathode for high-performance aluminium batteries","authors":"Fathima Ali Kayakool , Harita Pant , Menestreau Paul , Glaydson Simões Dos Reis , Gopinathan Manavalan , Vadali Venkata Satya Siva Srikanth , Mikael Thyrel , Shaikshavali Petnikota","doi":"10.1016/j.crcon.2024.100301","DOIUrl":"10.1016/j.crcon.2024.100301","url":null,"abstract":"<div><div>The development of sustainable and efficient energy storage systems is crucial for addressing the growing global energy demand. This study investigates the potential of mesoporous carbon derived from lignin sulfonate as a cathode material for aluminium batteries. Lignin sulfonate, a by-product of the paper industry, was used as a precursor to synthesize mesoporous carbon through a facile and eco-friendly activation process. The resulting carbon material exhibited a high specific surface area of ∼ 2259 m<sup>2</sup>/g and a well-defined balance of micro- and meso- porosity, making it a promising cathode material for high-performance aluminium batteries. Electrochemical characterization showed that the mesoporous carbon cathode delivered an impressive specific capacity of 91 mAh/g at 1.0 A/g current density even after 7000 cycles with excellent cycling stability. It delivered superior rate capabilities of 105, 89, 80, 72, 67, 63, 90, and 105 mAh/g at 0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 1.0, and 0.1 A/g current rates, respectively. The use of lignin-sulfonate as a precursor to prepare mesoporous carbon opens up a new sustainable way for improving the electrochemical performance of carbon-based cathode materials for aluminium batteries.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 1","pages":"Article 100301"},"PeriodicalIF":6.4,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Utilization of CO2 and recycling of methanol Residue from the refining process for production of Bio-Methanol","authors":"Rujira Jitrwung , Kuntima Krekkeitsakul , Nattawee Teerananont , Parinya Thongyindee , Weerawat Patthaveekongka , Chinnathan Areeprasert","doi":"10.1016/j.crcon.2024.100302","DOIUrl":"10.1016/j.crcon.2024.100302","url":null,"abstract":"<div><div>This study explores the synthesis of bio-methanol from biogas, focusing on the optimization of carbon dioxide (CO<sub>2</sub>) separation via alternating pressure adsorption and subsequent methanol production using varying methane (CH<sub>4</sub>) ratios. Methanol synthesis was conducted under CH<sub>4</sub>/CO<sub>2</sub> ratios of 30/70, 50/50, and 70/30, utilizing both pure water and methanol solutions at concentrations of 10 %, 20 %, 30 %, and 40 %. The results demonstrated that increasing the CH<sub>4</sub> ratio led to enhanced CO<sub>2</sub> conversion, with maximum values of 42.59 % and methanol production reaching 3,850 g/day. The study further investigated the refining process of crude methanol, achieving a purity exceeding 99 % through a three-column distillation approach. Notably, the recycling of waste methanol significantly improved both methanol yield and CO<sub>2</sub> consumption, indicating a promising pathway for sustainable bio-methanol production. Overall, this research highlights the potential of integrating biogas utilization with efficient methanol synthesis and refining processes.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 1","pages":"Article 100302"},"PeriodicalIF":6.4,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yutong Zou , Chengkun Xiao , Xiaoyang Kong , Liang Qiao , Wei Wang , Chunya Wang , Aijun Duan , Chunming Xu , Xilong Wang
{"title":"Influence of grain size of acidic NiMo/TS-1 on its catalytic performance for hydrodesulfurization of dibenzothiophenes","authors":"Yutong Zou , Chengkun Xiao , Xiaoyang Kong , Liang Qiao , Wei Wang , Chunya Wang , Aijun Duan , Chunming Xu , Xilong Wang","doi":"10.1016/j.crcon.2024.100299","DOIUrl":"10.1016/j.crcon.2024.100299","url":null,"abstract":"<div><div>TS-1 zeolites with different grain sizes were prepared under hydrothermal conditions by tuning the amount of template agent, chelating agent, and temperature, which were further used as supports for the NiMo/TS-1 catalysts. The optimization of synthesis conditions has achieved controllable synthesis of grain sizes from nano-scale to micron-scale. TS-1 with smaller grain sizes possess larger specific surface area, external specific surface area, and pore volume, which can effectively shorten the diffusion path of the sulfide with complex structure. Nano-scale TS-1 has more highly-coordinated Ti species, acting as electronic additives to increase the sulfidation degree of the catalyst. Nano-scale NiMo/TS-1 exhibits higher acidity, which is beneficial for hydrodesulfurization (HDS) reactions. Among the series of NiMo/TS-1 catalysts, NiMo/TS-1 (120 nm) catalyst exhibits the highest dibenzothiophene (DBT, 88.4 %) and 4,6-dimethylbenzothiophene (4,6-DMDBT, 62.1 %) HDS activities.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 1","pages":"Article 100299"},"PeriodicalIF":6.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nivasini Paramasivam , Rubia Idris , Chooi Wen Tan , William Woei Fong Chong , Guo Ren Mong , Jahimin A. Asik , Atikah Ali , Nur Wahida Fatini Aidy , Fadzlita Mohd Tamiri , Siti Rahayu Mohd Hashim , Cheng Tung Chong
{"title":"Microwaved-induced co-pyrolysis of used engine lubricant and palm empty fruit bunch for alternative fuel recovery","authors":"Nivasini Paramasivam , Rubia Idris , Chooi Wen Tan , William Woei Fong Chong , Guo Ren Mong , Jahimin A. Asik , Atikah Ali , Nur Wahida Fatini Aidy , Fadzlita Mohd Tamiri , Siti Rahayu Mohd Hashim , Cheng Tung Chong","doi":"10.1016/j.crcon.2024.100300","DOIUrl":"10.1016/j.crcon.2024.100300","url":null,"abstract":"<div><div>Alternative fuel recovery from used engine lubricant (UEL) and empty fruit bunch (EFB) was achieved through microwave co-pyrolysis. Co-pyrolysis was chosen for its potential to improve the quality of pyrolytic oil by generating synergistic effects between two distinct feedstocks, reducing activation energy, and enhancing pyrolytic oil quality. The central composite design (CCD) of response surface methodology (RSM) was used to optimise the temperature and EFB ratio. Atomic absorption spectrometry (AAS) was employed to characterise the heavy metal concentration in the pyrolytic oil. The optimised pyrolytic oil (UE450) produced the highest oil yield (25.17 wt%) with the lowest metal concentration at 450 °C with a 50 % EFB ratio. The fuel’s characteristics were similar to those of conventional diesel, with a higher value of HHV (45.17 MJ/kg). However, the oil was slightly acidic, with a pH of 4.3. GC–MS analysis of UE450 revealed the presence of alkanes and monoaromatic-rich hydrocarbons. Additionally, the UE450 biochar was characterised using FTIR, FESEM, and XRF. FTIR analysis showed that the carbonyl group (C = O) peaks at 1730 and 1440 cm<sup>−1</sup> disappeared, indicating that heavy metals were bound to the biochar surface. Likewise, XRF analysis of UE450 biochar revealed that zinc (Zn) exhibited a high metal adsorption capacity, following the sequence Zn > Fe > Pb (1.96, 1.06, and 0.81 mmol/g). The XRF results also indicated a significant removal of SO<sub>3</sub> at approximately 10.37 mmol/g.</div></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"8 1","pages":"Article 100300"},"PeriodicalIF":6.4,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}