Shadeera Rouf , Yaser E. Greish , Bart Van der Bruggen , Sulaiman Al-Zuhair
{"title":"A multienzyme system immobilized on surface-modified metal–organic framework for enhanced CO2 hydrogenation","authors":"Shadeera Rouf , Yaser E. Greish , Bart Van der Bruggen , Sulaiman Al-Zuhair","doi":"10.1016/j.crcon.2024.100234","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogenating carbon dioxide to formate using formate dehydrogenase (FDH) is a sustainable approach for CO<sub>2</sub> mitigation. Herein, we developed a biocatalytic system with cofactor regeneration by immobilizing multiple enzymes, namely FDH, carbonic anhydrase (CA), and glutamate dehydrogenase (GDH), on a hydrophobic surface modified MOF, SA-HKUST-1. The adsorption kinetics of the multiple enzymes on the SA-HKUST-1 surface were described using pseudo second-order model, while the equilibrium followed Freundlich isotherm. Formate production by the enzymes immobilized on SA-HKUST-1 was 3.75 times higher than that achieved by free enzymes and 8.4 times higher than that of FDH immobilized alone on SA-HKUST-1. The hydrophobic interaction between the enzymes and the support altered the secondary structure of enzymes, and the immobilized enzymes retained 94% of their activity after four reuse cycles. This study provides novel insights into the combined effect of hydrophobic support and multiple enzymes on the catalytic efficiency and stability of FDH. These findings can provide a basis for developing a highly stable biocatalytic system with cofactor regeneration for continuous hydrogenation of CO<sub>2</sub> to formate at the industrial level.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 4","pages":"Article 100234"},"PeriodicalIF":6.4000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913324000231/pdfft?md5=ddc07e0d2a3744d0c6e4afe18889ae8c&pid=1-s2.0-S2588913324000231-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913324000231","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogenating carbon dioxide to formate using formate dehydrogenase (FDH) is a sustainable approach for CO2 mitigation. Herein, we developed a biocatalytic system with cofactor regeneration by immobilizing multiple enzymes, namely FDH, carbonic anhydrase (CA), and glutamate dehydrogenase (GDH), on a hydrophobic surface modified MOF, SA-HKUST-1. The adsorption kinetics of the multiple enzymes on the SA-HKUST-1 surface were described using pseudo second-order model, while the equilibrium followed Freundlich isotherm. Formate production by the enzymes immobilized on SA-HKUST-1 was 3.75 times higher than that achieved by free enzymes and 8.4 times higher than that of FDH immobilized alone on SA-HKUST-1. The hydrophobic interaction between the enzymes and the support altered the secondary structure of enzymes, and the immobilized enzymes retained 94% of their activity after four reuse cycles. This study provides novel insights into the combined effect of hydrophobic support and multiple enzymes on the catalytic efficiency and stability of FDH. These findings can provide a basis for developing a highly stable biocatalytic system with cofactor regeneration for continuous hydrogenation of CO2 to formate at the industrial level.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.