Wen-Qing Hu, Hui-Yuan Gao, Li Yang, Yu-Xin Wang, Hao-Jie Cheng, Si-Yu Yang, Mei-Yu Zhang, Jian Sun
{"title":"[Characterization of hippocampal components of Danzhi Xiaoyao Formula based on HPLC-Q-TOF-MS/MS and network pharmacology and assessment of its therapeutic potential for nervous system diseases].","authors":"Wen-Qing Hu, Hui-Yuan Gao, Li Yang, Yu-Xin Wang, Hao-Jie Cheng, Si-Yu Yang, Mei-Yu Zhang, Jian Sun","doi":"10.19540/j.cnki.cjcmm.20250426.201","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250426.201","url":null,"abstract":"<p><p>In this study, the pharmacodynamic components and potential pharmacological functions of Danzhi Xiaoyao Formula in treating nervous system diseases were investigated by hippocampal component characterization and network pharmacology. After rats were administrated with Danzhi Xiaoyao Formula by gavage, high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry(HPLC-Q-TOF-MS/MS) was employed to explore the components in the hippocampus of rats. Fifty-seven components were identified in the hippocampus of rats by comparing the extract of Danzhi Xiaoyao Formula, herbal components in the hippocampus after administration, and blank samples. KEGG and GO analyses predicted 74 core targets including GSK3B, MAPK1, AKT, IL6. These targets were involved in PI3K/Akt, NF-κB, MAPK, JAK/STAT, Wnt, and other signaling pathways. The results indicated that Danzhi Xiaoyao Formula may ameliorate other nervous system diseases enriched in DO, such as neurodegenerative diseases, cerebrovascular diseases, and mental and emotional disorders by mediating target pathways, inhibiting inflammation, reducing neuronal damage, and alleviating hippocampal atrophy. The relevant activities exhibited by this formula in nervous system diseases such as Alzheimer's disease, Parkinson's disease, and diabetic neuropathy have extremely high development value and are worthy of further in-depth research. This study provides a theoretical basis and practical guidance for expanding the application of Danzhi Xiaoyao Formula in the treatment of nervous system diseases.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 14","pages":"4053-4062"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144994374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing-Cheng Wang, Hong-Bing Sun, Teng Liu, Wen-Tao Zhu, Hong-Lan Wang, Yi Zhou, Wei-Yan Wang, Ping Yang, Shun-Yuan Jiang
{"title":"[Optimal harvesting period of cultivated Notopterygium incisum based on HPLC specific chromatogram combined with chemometrics and entropy weight-gray correlation analysis].","authors":"Jing-Cheng Wang, Hong-Bing Sun, Teng Liu, Wen-Tao Zhu, Hong-Lan Wang, Yi Zhou, Wei-Yan Wang, Ping Yang, Shun-Yuan Jiang","doi":"10.19540/j.cnki.cjcmm.20250416.102","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250416.102","url":null,"abstract":"<p><p>To determine the optimal cultivation duration and harvest period for cultivated Notopterygium incisum and promote its industrial development, this study established a characteristic chromatographic profile of cultivated N. incisum and employed chemometrics combined with entropy-weighted grey correlation analysis to assess differences in agronomic traits and quality indicators across different cultivation years and harvest periods. By comparing with reference substances, ten common peaks were identified, including chlorogenic acid, p-coumaric acid, ferulic acid, marmesinin, nodakenin, isochlorogenic acid B, notopterol, phenethyl ferulate, isoimperatorin, and falcarindiol. The similarity between the characteristic chromatographic profiles of N. incisum at different cultivation years and the reference profile was all above 0.932. Principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) revealed that the quality of 1-to 3-year-old cultivated N. incisum was highly dispersed and unstable, whereas the quality of 4-year-old cultivated N. incisum remained relatively stable across different harvest periods. This suggests that the accumulation of relevant compounds in the medicinal material had reached a plateau, confirming that the optimal cultivation period for N. incisum is four years. Entropy-weighted grey correlation analysis indicated that the quality of 4-year-old cultivated N. incisum across different harvest periods ranked from highest to lowest as follows: November, December, October, August, July, and September, demonstrating that November is the optimal harvest time. The findings of this study establish the suitable cultivation duration and optimal harvest period for N. incisum, providing a scientific basis for cultivation guidance and quality standardization.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 14","pages":"3878-3886"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144994387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Identification of critical quality attributes related to property and flavor of Jianwei Xiaoshi Tablets based on T1R2/T1R3/TRPV1-HEMT biosensor].","authors":"Dong-Hong Liu, Yan-Yu Han, Jing Wang, Hai-Yang Li, Xin-Yu Guo, Hui-Min Feng, Han He, Shuo-Shuo Xu, Zhi-Jian Zhong, Zhi-Sheng Wu","doi":"10.19540/j.cnki.cjcmm.20250321.304","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250321.304","url":null,"abstract":"<p><p>The quality of traditional Chinese medicine(TCM) is a critical foundation for ensuring the stability of its efficacy, as well as the safety and effectiveness of its clinical use. The identification of critical quality attributes(CQAs) is one of the core components of TCM preparation quality control. This study focuses on Jianwei Xiaoshi Tablets and explores their CQAs related to property and flavor from the perspective of taste receptor proteins. Three taste receptor proteins, T1R2, T1R3, and TRPV1, were selected, and a biosensor based on high-electron-mobility transistor(HEMT) was constructed to detect the interactions between Jianwei Xiaoshi Tablets and taste receptor proteins. Simultaneously, liquid chromatography-mass spectrometry(LC-MS) technology was used to analyze the chemical composition of Jianwei Xiaoshi Tablets. In examining the interaction strength, the results indicated that the interaction between Jianwei Xiaoshi Tablets and TRPV1 protein was the strongest, followed by T1R3, with the interaction with T1R2 being relatively weaker. By combining biosensing technology with LC-MS, 16 chemical components were identified from Jianwei Xiaoshi Tablets, among which six were selected as CQAs for sweetness and seven for pungency. Further validation experiments demonstrated that CQAs such as hesperidin and hesperetin had strong interactions with their corresponding taste receptor proteins. Through the combined use of multiple technological approaches, this study successfully determined the property and flavor-related CQAs of Jianwei Xiaoshi Tablets. It provides novel ideas and approach for the identification of CQAs in TCM preparations and offers comprehensive theoretical support for TCM quality control, contributing to the improvement and development of TCM preparation quality control systems.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 14","pages":"3930-3937"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144994416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[A new cephalotaxine-type alkaloid dimer from Cephalotaxus lanceolata].","authors":"Jia-Yang Ma, Jing Wang, Sha Chen, Chun-Lei Yuan, Jin-Yuan Yang, Da-Hong Li, Hui-Ming Hua","doi":"10.19540/j.cnki.cjcmm.20250412.202","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250412.202","url":null,"abstract":"<p><p>The chemical constituents from Cephalotaxus lanceolata were isolated and purified by using multiple chromatographic techniques, including octadecylsilane(ODS), silica gel, Sephadex LH-20 column chromatography, and semi-preparative high-performance liquid chromatography(HPLC). A total of 17 compounds obtained were identified by using spectroscopic methods such as nuclear magnetic resonance(NMR), mass spectrometry(MS), and ultraviolet(UV) combined with literature data. Compound 1 was a new alkaloid dimer, named cephalancetine E. The known compounds were determined as cephalancetine A(2), 11-hydroxycephalotaxine(3), 4-hydroxycephalotaxine(4), cephalotaxine(5), epicephalotaxine(6), cephalotaxine β-N-oxide(7), acetylcephalotaxine(8), cephalotine A(9), cephalotine B(10), 11-hydroxycephalotaxine hemiketal(11), 3-deoxy-3,11-epoxy-cephalotaxine(12), cephalotaxinone(13), isocephalotaxinone(14), 2,11-epoxy-1,2-dihydro-8-oxo-cephalotaxine(15), cephalotaxamide(16), and drupacine(17), respectively. Compounds 11, 12, and 15 were isolated from the Cephalotaxus genus for the first time. The biological activity was tested for compounds 1-17. The results reveal that compound 17 displays potent inhibitory activities against three human cancer cell lines(HepG-2, MCF-7, and SH-SY5Y).</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 13","pages":"3729-3741"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144994353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Comparison on chemical components of Angelicae Sinensis Radix before and after wine processing by HS-GC-IMS, HS-SPME-GC-MS, and UPLC-Q-Orbitrap-MS combined with chemometrics].","authors":"Xue-Hao Sun, Jia-Xuan Chen, Jia-Xin Yin, Xiao Han, Zhi-Ying Dou, Zheng Li, Li-Ping Kang, He-Shui Yu","doi":"10.19540/j.cnki.cjcmm.20250321.302","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250321.302","url":null,"abstract":"<p><p>The study investigated the intrinsic changes in material basis of Angelicae Sinensis Radix during wine processing by headspace-gas chromatography-ion mobility spectrometry(HS-GC-IMS), headspace-solid phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS), and ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry(UPLC-Q-Orbitrap-MS) combined with chemometrics. HS-GC-IMS fingerprints of Angelicae Sinensis Radix before and after wine processing were established to analyze the variation trends of volatile components and characterize volatile small-molecule substances before and after processing. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed for differentiation and difference analysis. A total of 89 volatile components in Angelicae Sinensis Radix were identified by HS-GC-IMS, including 14 unsaturated hydrocarbons, 16 aldehydes, 13 ketones, 9 alcohols, 16 esters, 6 organic acids, and 15 other compounds. HS-SPME-GC-MS detected 118 volatile components, comprising 42 unsaturated hydrocarbons, 11 aromatic compounds, 30 alcohols, 8 alkanes, 6 organic acids, 4 ketones, 7 aldehydes, 5 esters, and 5 other volatile compounds. UPLC-Q-Orbitrap-MS identified 76 non-volatile compounds. PCA revealed distinct clusters of raw and wine-processed Angelicae Sinensis Radix samples across the three detection methods. Both PCA and OPLS-DA effectively discriminated between the two groups, and 145 compounds(VIP>1) were identified as critical markers for evaluating processing quality, including 4-methyl-3-penten-2-one, ethyl 2-methylpentanoate, and 2,4-dimethyl-1,3-dioxolane detected by HS-GC-IMS, angelic acid, β-pinene, and germacrene B detected by HS-SPME-GC-MS, and L-tryptophan, licoricone, and angenomalin detected by UPLC-Q-Orbitrap-MS. In conclusion, the integration of the three detection methods with chemometrics elucidates the differences in the chemical material basis between raw and wine-processed Angelicae Sinensis Radix, providing a scientific foundation for understanding the processing mechanisms and clinical applications of wine-processed Angelicae Sinensis Radix.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 14","pages":"3909-3917"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144994395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin-Rong Zhang, Tian-Lang Wang, Jia-Hao Zhang, Lu Jin, Jian-Bo Wang, Ya-Nan Xue, Yi Qu
{"title":"[Effect and mechanism of Buyang Huanwu Decoction in improving neurological function in ischemic stroke rats based on IRE1α/ASK1/JNK pathway].","authors":"Xin-Rong Zhang, Tian-Lang Wang, Jia-Hao Zhang, Lu Jin, Jian-Bo Wang, Ya-Nan Xue, Yi Qu","doi":"10.19540/j.cnki.cjcmm.20250416.501","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250416.501","url":null,"abstract":"<p><p>This study aimed to investigate the effect and mechanism of Buyang Huanwu Decoction in regulating endoplasmic reticulum stress via the inositol-requiring enzyme 1α(IRE1α)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway to improve neurological function in rats with cerebral ischemia/reperfusion injury(CIRI). SPF-grade male sprague-dawley(SD) rats were randomly divided into Sham group, model group, Buyang Huanwu Decoction group, and edaravone group. Except for the Sham group, the other groups were subjected to the modified suture method to establish a middle cerebral artery occlusion/reperfusion(MCAO/R) model. After treatment, neurological function was assessed using the Zea Longa scoring system. Gait analysis was used to detect the motor function. Detection of relative infarct area in brain tissue using 2,3,5-triphenyltetrazolium chloride(TTC) staining. Nissl staining was used to observe the structure of neuronal cells. Western blot and real-time fluorescence quantitative PCR(RT-qPCR) were used to detect IRE1α, ASK1, JNK, B cell lymphoma-2(Bcl-2), Bcl-2 related X protein(Bax), and Caspase-3 in the brain tissue. Immunohistochemistry was used to detect the positive expression of IRE1α, ASK1, and JNK. Immunofluorescence was used to detect the fluorescence expression levels of Bax, Bcl-2, and Caspase-3. The results showed that compared with the Sham group, the model group exhibited increased neurological scores(P<0.01), increased ratio of ground contact area and strength in both forelimbs(P<0.01), enlarged relative infarct area of brain tissue(P<0.05), and a reduced number of Nissl staining-positive cells(P<0.01). The protein and mRNA expression levels of IRE1α, ASK1, JNK, Bax, and Caspase-3 in brain tissue were significantly elevated, while those of Bcl-2 were decreased(P<0.05). Compared with the model group, both the Buyang Huanwu Decoction group and edaravone group showed reduced neurological scores(P<0.05), decreased ratio of ground contact area and strength in both forelimbs(P<0.05), smaller relative infarct area(P<0.05), alleviated neuronal damage, and increased number of Nissl staining-positive cells(P<0.05). The expression levels of IRE1α, ASK1, JNK, Bax, and Caspase-3 protein and mRNA in brain tissue were significantly reduced, while those of Bcl-2 were significantly increased(P<0.05). The results indicated that Buyang Huanwu Decoction can effectively improve brain injury in CIRI rats, and its mechanism of action may be related to regulating the endoplasmic reticulum stress IRE1α/ASK1/JNK signaling pathway.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 14","pages":"3857-3867"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144994423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Han-Wen Zhang, Yue-E Li, Jia-Wei Yu, Qiang Guo, Ming-Xuan Li, Yu Li, Xi Mei, Lin Li, Lian-Lin Su, Chun-Qin Mao, De Ji, Tu-Lin Lu
{"title":"[Research progress in machine learning in processing and quality evaluation of traditional Chinese medicine decoction pieces].","authors":"Han-Wen Zhang, Yue-E Li, Jia-Wei Yu, Qiang Guo, Ming-Xuan Li, Yu Li, Xi Mei, Lin Li, Lian-Lin Su, Chun-Qin Mao, De Ji, Tu-Lin Lu","doi":"10.19540/j.cnki.cjcmm.20250529.301","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250529.301","url":null,"abstract":"<p><p>Traditional Chinese medicine(TCM) decoction pieces are a core carrier for the inheritance and innovation of TCM, and their quality and safety are critical to public health and the sustainable development of the industry. Conventional quality control models, while having established a well-developed system through long-term practice, still face challenges such as relatively long inspection cycles, insufficient objectivity in characterizing complex traits, and urgent needs for improving the efficiency of integrating multidimensional quality information when confronted with the dual demands of large-scale production and precision quality control. With the rapid development of artificial intelligence, machine learning can deeply analyze multidimensional data of the morphology, spectroscopy, and chemical fingerprints of decoction pieces by constructing high-dimensional feature space analysis models, significantly improving the standardization level and decision-making efficiency of quality evaluation. This article reviews the research progress in the application of machine learning in the processing, production, and rapid quality evaluation of TCM decoction pieces. It further analyzes current challenges in technological implementation and proposes potential solutions, offering theoretical and technical references to advance the digital and intelligent transformation of the industry.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 13","pages":"3605-3614"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144993723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Study on strategies and methods for discovering risk of traditional Chinese medicine-related liver injury based on real-world data: an example of Corydalis Rhizoma].","authors":"Long-Xin Guo, Li Lin, Yun-Juan Gao, Min-Juan Long, Sheng-Kai Zhu, Ying-Jie Xu, Xu Zhao, Xiao-He Xiao","doi":"10.19540/j.cnki.cjcmm.20250226.401","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250226.401","url":null,"abstract":"<p><p>In recent years, there have been frequent adverse reactions/events associated with traditional Chinese medicine(TCM), especially liver injury related to traditional non-toxic TCM, which requires adequate attention. Liver injury related to traditional non-toxic TCM is characterized by its sporadic and insidious nature and is influenced by various factors, making its detection and identification challenging. There is an urgent need to develop a strategy and method for early detection and recognition of traditional non-toxic TCM-related liver injury. This study was based on national adverse drug reaction monitoring center big data, integrating methodologies such as reporting odds ratio(ROR), network toxicology, and computational chemistry, so as to systematically research the risk signal identification and evaluation methods for TCM-related liver injury. The optimized ROR method was used to discover potential TCM with a risk of liver injury, and network toxicology and computational chemistry were used to identify potentially high-risk TCM. Additionally, typical clinical cases were analyzed for confirmation. An integrated strategy of "discovery via big data, identification via dry/wet method, confirmation via typical cases, and precise risk prevention and control" was developed to identify the risk of TCM-related liver injury. Corydalis Rhizoma was identified as a TCM with high risk, and its toxicity-related substances and potential toxicity mechanisms were analyzed. The results revealed that liver injury is associated with components such as tetrahydropalmatine and tetrahydroberberine, with potential mechanisms related to immune-inflammatory pathways such as the tumor necrosis factor signaling pathway, interleukin-17 signaling pathway, and Th17 cell differentiation. This paper innovatively integrated real-world evidence and computational toxicology methods, offering insights and technical support for establishing a risk discovery and identification strategy for TCM-related liver injury based on real-world big data, providing innovative ideas and strategies for guiding the safe and rational use of medication in clinical practices.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 13","pages":"3784-3795"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144994305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Fangxia Dihuang Formula regulates PERK/eIF2α axis-mediated microglial polarization in treatment of breast cancer complicated by depression].","authors":"Hong-Qiao Fan, Ying-Yi Fan, Xiao-Hua Pei","doi":"10.19540/j.cnki.cjcmm.20250325.501","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250325.501","url":null,"abstract":"<p><p>Study on the mechanism of Fangxia Dihuang Formula(FXDH) in treating breast cancer complicated with depression through the regulation of M1/M2 microglial polarization via the PERK/eIF2α axis. In addition to control group and 4T1 group, a mouse model of breast cancer complicated with depression was established using 4T1 cells combined with corticosterone. The mice were divided into model group, PERK/eIF2α signaling axis agonist(CCT020312, 2 mg·kg~(-1)·d~(-1)) group, CCT020312(2 mg·kg~(-1)·d~(-1)) + FXDH(13.65 g·kg~(-1)·d~(-1)) group, FXDH(13.65 g·kg~(-1)·d~(-1)) group, FXDH(13.65 g·kg~(-1)·d~(-1)) + Capecitabine Tablets(CAP, 390 mg·kg~(-1)·d~(-1)) group, and Fluoxetine Hydrochloride Capsules(FXT, 2.6 mg·kg~(-1)·d~(-1)) + CAP(390 mg·kg~(-1)·d~(-1)) group, with continuous intervention for 21 d. Depression-like behaviors in mice were assessed through sugar preference test and open field test. Hematoxylin-eosin(HE) staining was used to evaluate the morphology of tumor and hippocampal DG region neurons. Nissl staining was employed to detect changes in Nissl bodies in the hippocampal CA3 region. Immunofluorescence was used to observe cluster of differentiation 86(CD86)/ionized calcium-binding adapter molecule 1(Iba-1) and cluster of differentiation 206(CD206)/Iba-1 in hippocampal tissue. Real-time fluorescence quantitative polymerase chain reaction(RT-qPCR) was used to detect the mRNA expression of M1-type microglia [interleukin-6(IL-6), tumor necrosis factor-α(TNF-α)] and M2-type [arginase-1(Arg-1), IL-10] in hippocampal tissue. Western blot was used to detect the protein expression of key factors in the PERK/eIF2α axis, including PERK, eIF2α, activating transcription factor 4(ATF4), and C/EBP homologous protein(CHOP) in hippocampal tissue. The results showed that compared to model group/CCT020312 + FXDH group, FXDH group increased sugar preference index, total movement distance, central zone distance, and central zone entries; reduced tumor mass and volume; tumor cells were sparsely arranged, with a smaller nuclear-to-cytoplasmic ratio and reduced nuclear division figures, increased Nissl body count, and alleviated neuronal nuclear pyknosis; increased CD206-positive M2-type microglia expression, decreased CD86/Iba-1-positive M1-type microglia expression; reduced IL-6 and TNF-α mRNA expression, and increased Arg-1 and IL-10 mRNA expression; downregulated PERK, eIF2α, ATF4, and CHOP protein expression levels. The results indicate that the mechanism of FXDH in treating breast cancer complicated with depression may be related to inhibiting the activity of the PERK/eIF2α axis, reducing the proportion of M1-type microglia, increasing the proportion of M2-type microglia, thereby suppressing neuronal immune inflammation, improving depressive symptoms, and subsequently delaying the progression of breast cancer.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 14","pages":"4015-4025"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144994421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Rational use of drug and scientific regulation based on effect-toxicity bidirectional action of Gardeniae Fructus].","authors":"Shuang Cui, Jing-Zhuo Tian, Ai-Hua Liang","doi":"10.19540/j.cnki.cjcmm.20250126.401","DOIUrl":"10.19540/j.cnki.cjcmm.20250126.401","url":null,"abstract":"<p><p>Gardeniae Fructus, a traditional Chinese medicine, has significant pharmacological activities such as clearing heat and detoxifying, promoting bile secretion and protecting liver injury. It is widely used in clinical practice for treating conditions like fever-induced restlessness, damp-heat jaundice, dysuria with pain, and fire-toxin sores. Gardeniae Fructus has been included in "list of items that are both food and medicine", so it is also used as an ingredient in food and health products. However, recent toxicological studies have shown that Gardeniae Fructus has certain potential hepatotoxicity, and its improper use may pose a risk. Therefore, it is necessary to clarify the dual regulatory effects and their scientific connotations of Gardeniae Fructus on efficacy and toxicity. Based on the current progress in clinical, pharmacological and toxicological researches, this paper will discuss the characteristics and possible mechanisms of the dual effects of efficacy and toxicity of Gardeniae Fructus, and propose thoughts on the rational clinical use and scientific supervision of Gardeniae Fructus.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 13","pages":"3635-3644"},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144994396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}