{"title":"[Root rot and control of Panax quinquefolium: a review].","authors":"Rao-Jing Li, Jia-le Liu, Jian Zhang, Juan Chen","doi":"10.19540/j.cnki.cjcmm.20241216.103","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20241216.103","url":null,"abstract":"<p><p>Panax quinquefolium, also known as American ginseng, is a perennial herb in the Araliaceae family. It has the effects of replenishing Qi and nourishing Yin, clearing heat and generating saliva. Additionally, it has protective effects on the nerves, improves myocardial ischemia and hypoxia, regulates metabolism, enhances the body's immunity, and is known as "green gold". However, with the development of the industry and the expansion of planting scales, P. quinquefolium faces serious disease issues that are difficult to prevent and control. Among these, root rot, often referred to as "plant cancer", is one of the most destructive plant diseases affecting the yield and quality of P. quinquefolium. P. quinquefolium root rot is caused by the fungi Fusarium(genus) and Ilyonectria(genus), which severely affect the root system and limit the production and quality of P. quinquefolium, thus restricting the development of the P. quinquefolium industry. In recent years, research on P. quinquefolium root rot has attracted significant attention and made some progress. However, the mechanisms of interaction between the root rot pathogens and the host plant remain unclear. This paper reviews the research progress on the pathogens, infection cycle, disease prevalence, pathogenesis, and biological control of P. quinquefolium root rot to provide prospects for future research, aiming to provide references for the in-depth study and effective control of root rot, and to promote the green and healthy development of the P. quinquefolium industry.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 9","pages":"2317-2323"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy].","authors":"Yu-Feng Cai, Wei Hu, Yi-Gang Wan, Yue Tu, Si-Yi Liu, Wen-Jie Liu, Liu-Yun-Xin Pan, Ke-Jia Wu","doi":"10.19540/j.cnki.cjcmm.20241212.709","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20241212.709","url":null,"abstract":"<p><p>This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed ","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 9","pages":"2461-2471"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Processing technology of calcined Magnetitum based on concept of QbD and its XRD characteristic spectra].","authors":"De-Wen Zeng, Jing-Wei Zhou, Tian-Xing He, Yu-Mei Chen, Huan-Huan Xu, Jian Feng, Yue Yang, Xin Chen, Jia-Liang Zou, Lin Chen, Hong-Ping Chen, Shi-Lin Chen, Yuan Hu, You-Ping Liu","doi":"10.19540/j.cnki.cjcmm.20250218.301","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250218.301","url":null,"abstract":"<p><p>Guided by the concept of quality by design(QbD), this study optimizes the calcination and quenching process of calcined Magnetitum and establishes the XRD characteristic spectra of calcined Magnetitum, providing a scientific basis for the formulation of quality standards. Based on the processing methods and quality requirements of Magnetitum in the Chinese Pharmacopoeia, the critical process parameters(CPPs) identified were calcination temperature, calcination time, particle size, laying thickness, and the number of vinegar quenching cycles. The critical quality attributes(CQAs) included Fe mass fraction, Fe~(2+) dissolution, and surface color. The weight coefficients were determined by combining Analytic Hierarchy Process(AHP) and the criteria importance though intercrieria correlation(CRITIC) method, and the calcination process was optimized using orthogonal experimentation. Surface color was selected as a CQA, and based on the principle of color value, the surface color of calcined Magnetitum was objectively quantified. The vinegar quenching process was then optimized to determine the best processing conditions. X-ray diffraction(XRD) was used to establish the characteristic spectra of calcined Magnetitum, and methods such as similarity evaluation, cluster analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to evaluate the quality of the spectra. The optimized calcined Magnetitum preparation process was found to be calcination at 750 ℃ for 1 h, with a laying thickness of 4 cm, a particle size of 0.4-0.8 cm, and one vinegar quenching cycle(Magnetitum-vinegar ratio 10∶3), which was stable and feasible. The XRD characteristic spectra analysis method, featuring 9 common peaks as fingerprint information, was established. The average correlation coefficient ranged from 0.839 5-0.988 1, and the average angle cosine ranged from 0.914 4 to 0.995 6, indicating good similarity. Cluster analysis results showed that Magnetitum and calcined Magnetitum could be grouped together, with similar compositions. OPLS-DA discriminant analysis identified three key characteristic peaks, with Fe_2O_3 being the distinguishing component between the two. The final optimized processing method is stable and feasible, and the XRD characteristic spectra of calcined Magnetitum was initially established, providing a reference for subsequent quality control and the formulation of quality standards for calcined Magnetitum.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 9","pages":"2391-2403"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Quality evaluation of Commelina communis medicinal materials from different origins based on content of four alkaloid components combined with chemometrics].","authors":"Bi-Ru Fu, Wei-Jie Zhuo, Xuan-Xiu Huang, Peng-Cong Lu, Xin He, Rui-Feng Ji","doi":"10.19540/j.cnki.cjcmm.20250217.102","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250217.102","url":null,"abstract":"<p><p>This study employs ultra-performance liquid chromatography(UPLC) to analyze the differences in alkaloid content of Commelina communis from various geographical origins, exploring its feasibility as a quality evaluation indicator. A total of 57 batches of C. communis samples from 23 provinces, autonomous regions, and municipalities in China were selected. The MicroPulite HSS T3(2.1 mm×50 mm, 1.8 μm)column was used with a mobile phase of acetonitrile-0.2% phosphoric acid aqueous solution(20∶80), detection wavelength at 254 nm, and a flow rate of 0.3 mL·min~(-1) to measure the content of 1-deoxynojirimycin(DNJ) and deoxymannojirimycin(DMJ). The MicroPulite XP tC_(18)(2.1 mm×100 mm, 1.7 μm)column was employed with a mobile phase of acetonitrile-0.2% phosphoric acid aqueous solution(4∶96), detection wavelength at 254 nm, and a flow rate of 0.4 mL·min~(-1) to measure the content of norharmine(NHM) and harmanme(HM). Chemometric methods were applied to study the relationships and differences among the 57 batches of C. communis. Significant differences in alkaloid content were observed among C. communis from different regions, with the average total content decreasing in the order of North China, Northeast China, Northwest China, East China, Southwest China, Central China, and South China. Cluster analysis(CA) and principal component analysis(PCA) further revealed the quality differences of C. communis from various origins, and partial least squares discriminant analysis(PLS-DA) identified DNJ as a marker compound to distinguish the quality differences between different geographical sources of C. communis. It is recommended that the content limit of DNJ be set at no less than 0.055 9%, providing a reference for the quality evaluation and clinical application of C. communis medicinal materials.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 9","pages":"2422-2431"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Research progress on pharmacological effects and mechanism of α-asarone and β-asarone in Acori Tatarinowii Rhizoma].","authors":"Hao Wang, Lei Gao, Jin-Lian Zhang, Ling-Yun Zhong, Shu-Han Jin, Xiao-Yan Chen, Wen Zhang, Jia-Wen Wen","doi":"10.19540/j.cnki.cjcmm.20250211.602","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250211.602","url":null,"abstract":"<p><p>Acori Tatarinowii Rhizoma is the dried rhizome of Acorus tatarinowii in the family of Tennantiaceae, which has the efficacy of opening up the orifices and expelling phlegm, awakening the mind and wisdom, and resolving dampness and opening up the stomach. Modern studies have shown that volatile oil is the main active ingredient of Acori Tatarinowii Rhizoma, and α-asarone and β-asarone have been proved to be the active ingredients in the volatile oil of Acori Tatarinowii Rhizoma, with pharmacological effects such as anti-Alzheimer's disease, antiepileptic, anti-Parkinson's disease, antidepressant, anticerebral ischemia/reperfusion injury, anti-thrombosis, lipid-lowering, and antitumor. By summarising and outlining the pharmacological effects of α-asarone and β-asarone and elucidating the possible mechanisms of their pharmacological effects, we can provide theoretical basis for the further research and clinical application of Acori Tatarinowii Rhizoma.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 9","pages":"2305-2316"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ling-Xia Xu, Xin-Xin Huang, Ji-Cheng Shu, Ting Tan, Yun Luo
{"title":"[Chemical constituents of bulbs of Narcissus tazetta var. chinensis].","authors":"Ling-Xia Xu, Xin-Xin Huang, Ji-Cheng Shu, Ting Tan, Yun Luo","doi":"10.19540/j.cnki.cjcmm.20250131.202","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250131.202","url":null,"abstract":"<p><p>The 95% ethanol extract from bulbs of Narcissus tazetta var. chinensis(BNTC) was eluted with 30%, 60%, and pure methanol on D-101 macroporous resin. The elution fractions were isolated and purified by silica gel column chromatography, thin layer chromatography, D-101 macroporous resin, semi-preparative high performance liquid chromatography(HPLC), and HPLC. The purified compounds were identified using one-dimensional and two-dimensional spectroscopy, high-resolution mass spectrometry, and other techniques. A total of 15 compounds were isolated and identified as 5-(4-hydroxy-3-methoxyphenyl)-3-(4-hydroxyphenyl)-N-methyl-3,6-dihydropyridine-2(1H)-one(1), 3,5-di(hydroxyphenyl)-N-methyl-3,6-dihydropyridine-2(1H)-one(2), protocatechualdehyde(3), protocatechuic acid(4), 3,4-dihydroxyacetophenone(5), syringic acid(6), vanillic acid(7), p-hydroxybenzoic acid(8),(2S)-4'-hydroxy-7-methoxyflavan(9), 2,4,6-trimethoxyacetophenone(10), N-trans-ferulic acid p-hydroxyphenylethylamine(11), N-cis-p-coumaroyltyramine(12), N-trans-p-coumaroyltyramine(13), piscidic acid(14), 5-hydroxymethylfurfural(15). Compounds 1 and 2 are new compounds with similar structure that have not been reported yet, named narcissus A and narcissus B. Compounds 8-13 were isolated and identified from the genus Narcissus for the first time, and compounds 14 and 15 were isolated from BNTC for the first time. Compounds 1 and 2 inhibited the release of NO from RAW264.7 cells induced by lipopolysaccharide(LPS)(P<0.001), with compound 1 having an IC_(50) value of(72.76±2.97) μmol·L~(-1) and compound 2 having an IC_(50) value of(63.59±0.96) μmol·L~(-1).</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 9","pages":"2404-2410"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Evaluation of nutritional value of three kinds of medicinal snakes based on content of 15 amino acids].","authors":"Xi Wang, Ye-Yuan Lin, Wen-Ting Zhong, Zhi-Guo Ma, Meng-Hua Wu, Hui Cao, Ying Zhang","doi":"10.19540/j.cnki.cjcmm.20250216.104","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250216.104","url":null,"abstract":"<p><p>A high-performance liquid chromatography method using pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate was developed to determine the content of 15 amino acids in the medicinal snakes Bungarus Parvus, Agkistrodon, and Zaocys. The results showed that the total amino acid(TAA) content ranged from 277.13 to 515.05 mg·g~(-1), with the top four amino acids in all three species being glutamic acid(Glu), glycine(Gly), aspartic acid(Asp), and lysine(Lys). The essential amino acid(EAA) content ranged from 74.56 to 203.94 mg·g~(-1), with Agkistrodon exhibiting the highest content. The non-essential amino acid(NEAA), semi-essential amino acid(semi-EAA), and medicinal amino acid(MAA) content ranged from 189.06 to 318.23, 12.89 to 33.53, and 179.83 to 342.33 mg·g~(-1), respectively, with Zaocys having the highest content in these categories. Amino acid nutritional value was evaluated using the amino acid ratio(RAA), amino acid ratio coefficient(RCAA), and amino acid ratio coefficient score(SRCAA), and the results indicated that all three medicinal snakes possessed good nutritional value. The amino acid composition was similar across the species, though significant differences in content were observed. Based on these differences, an orthogonal partial least squares-discriminant analysis(OPLS-DA) model was established, which could clearly distinguish between the three medicinal snake species. The key differences in amino acid content included Gly, tyrosine(Tyr), Glu, and serine(Ser), which may be related to the observed clinical application differences among the species. Further research into the mechanisms of these differential amino acids is expected to provide more insights into the clinical application disparities of these three medicinal snake species.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 9","pages":"2411-2421"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Color-component correlation and mechanism of component transformation of processed Citri Reticulatae Semen].","authors":"Kui-Lin Zhu, Jin-Lian Zou, Xu-Li Deng, Mao-Xin Deng, Hai-Ming Wang, Rui Yin, Zhang-Xian Chen, Yun-Tao Zhang, Hong-Ping He, Fa-Wu Dong","doi":"10.19540/j.cnki.cjcmm.20250224.302","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250224.302","url":null,"abstract":"<p><p>High-performance liquid chromatography(HPLC) was used to determine the content of three major components in Citri Reticulatae Semen(CRS), including limonin, nomilin, and obacunone. The chromaticity of the CRS sample during salt processing and stir-frying was measured using a color difference meter. Next, the relationship between the color and content of the salt-processed CRS sample was investigated through correlation analysis. By integrating the oil bath technique for processing simulation with HPLC, the changes in the relative content of nomilin and its transformation products were analyzed, with its structural transformation pattern during processing identified. Additionally, RAW264.7 cells were induced with lipopolysaccharides(LPSs) to establish an inflammatory model, and the anti-inflammatory activity of nomilin and its transformation product, namely obacunone was evaluated. The results indicated that as processing progressed, E~*ab and L~* values showed a downward trend; a~* values exhibited a slow increase over a certain period, followed by no significant changes, and b~* values remained stable with no significant changes over a certain period and then started to decrease. The limonin content remained barely unchanged; the nomilin content decreased, and the obacunone increased significantly. The changing trends in content and color parameters during salt-processing and stir-frying were basically consistent. The content of nomilin and obacunone was significantly correlated with the colorimetric values(L~*, a~*, b~*, and E~*ab), while limonin content showed no significant correlation with these values. By analyzing HPLC patterns of nomylin at different heating temperatures and time, it was found that under conditions of 200-250 ℃ for heating of 5-60 min, the content of nomilin significantly decreased, while the obacunone content increased pronouncedly. The in vitro anti-inflammatory activity results indicated that compared to the model group, the group with a high concentration of nomilin and the groups with varying concentrations of obacunone showed significantly reduced release of nitric oxide(NO)(P<0.01). When both were at the same concentration, obacunone showed better performance in inhibiting NO release. In this study, the obvious correlation between the color and content of major components during the processing of CRS samples was identified, and the dynamic patterns of quality change in CRS samples during processing were revealed. Additionally, the study revealed and confirmed the transformation of nomilin into obacunone during processing, with the in vitro anti-inflammatory activity of obacunone significantly greater than that of nomilin. These findings provided a scientific basis for CRS processing optimization, tablet quality control, and its clinical application.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 9","pages":"2382-2390"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Effect and mechanism of salt-processed Phellodendri Chinensis Cortex in improving insulin resistance based on network pharmacology and experimental verification].","authors":"Jin-Jie Lei, Yang-Miao Xia, Shang-Ling Zhao, Rui Tan, Ling-Ying Yu, Zhi-Min Chen","doi":"10.19540/j.cnki.cjcmm.20240218.302","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20240218.302","url":null,"abstract":"<p><p>This study explores the therapeutic differences and mechanisms of salt-processed Phellodendri Chinensis Cortex in improving insulin resistance(IR) based on network pharmacology, molecular docking, and cellular experiments. The components and intersection targets of Phellodendri Chinensis Cortex in improving IR were collected from databases, and a "drug-component-target-disease" network and protein-protein interaction(PPI) network were constructed to screen core components and targets. A total of 29 active components and 240 intersection targets were identified, of which 13 were core targets. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were used to identify key signaling pathways, and molecular docking was performed to validate the binding activity between core components and targets. An IR model in HepG2 cells was induced using insulin combined with high glucose, and the effects of Phellodendri Chinensis Cortex before and after salt-processing on cell glucose consumption were evaluated. The expression of proteins related to the mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT) signaling pathways was detected by Western blot. The cellular experimental results showed that, compared with the model group, glucose consumption in the drug-treated groups was significantly increased(P<0.01), the phosphorylation level of extracellular regulated protein kinase(ERK) was decreased(P<0.05), the phosphorylation levels of PI3K and AKT were increased, and the expression of glucose transporter 4(GLUT4) was also upregulated(P<0.05). Furthermore, the effect of salt-processed Phellodendri Chinensis Cortex was better than that of raw Phellodendri Chinensis Cortex. The study demonstrates that Phellodendri Chinensis Cortex, both before and after salt-processing, improves IR by regulating the expression of related proteins in the MAPK and PI3K-AKT signaling pathways, with enhanced effects after salt-processing.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 9","pages":"2373-2381"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Exploring in vivo existence forms of Notoginseng Radix et Rhizoma in rats].","authors":"Meng-Ge Feng, Lin-Han Xiang, Jing Zhang, Wen-Hui Zhao, Yang Li, Li-Li Li, Guang-Xue Liu, Shao-Qing Cai, Feng Xu","doi":"10.19540/j.cnki.cjcmm.20250201.201","DOIUrl":"https://doi.org/10.19540/j.cnki.cjcmm.20250201.201","url":null,"abstract":"<p><p>The study aims to elucidate the existence forms(original constituents and metabolites) of Notoginseng Radix et Rhizoma in rats and reveal its metabolic pathways. After Notoginseng Radix et Rhizoma was administered orally once a day for seven consecutive days to rats, all urine and feces samples were collected for seven days, while the blood samples were obtained 6 h after the last administration. Using the ultra high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technique, this study identified 6, 73, and 156 existence forms of Notoginseng Radix et Rhizoma in the rat plasma, urine, and feces samples, respectively. Among them, 101 compounds were identified as new existence forms, and 13 original constituents were identified by comparing with reference compounds. The metabolic reactions of constituents from Notoginseng Radix et Rhizoma were mainly deglycosylation, dehydration, hydroxylation, hydrogenation, dehydrogenation, acetylation, and amino acid conjugation. Furthermore, the possible in vivo metabolic pathways of protopanaxatriol(PPT) in rats were proposed. Through comprehensive analysis of the liquid chromatography-mass spectrometry(LC-MS) data, isomeric compounds were discriminated, and the planar chemical structures of 32 metabolites were clearly identified. According to the literature, 48 original constituents possess antitumor and cardiovascular protective bioactivities. Additionally, 32 metabolites were predicted to have similar bioactivities by SuperPred. This research lays the foundation for further exploring the in vivo effective forms of Notoginseng Radix et Rhizoma.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"50 9","pages":"2539-2562"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}