Plant Communications最新文献

筛选
英文 中文
Lr34/Yr18/Sr57/Pm38 confers broad-spectrum resistance to fungal diseases via sinapyl alcohol transport for cell wall lignification in wheat. Lr34/Yr18/Sr57/Pm38通过转运用于小麦细胞壁木质化的西那皮醇,赋予小麦对真菌病害的广谱抗性。
IF 9.4 1区 生物学
Plant Communications Pub Date : 2024-09-03 DOI: 10.1016/j.xplc.2024.101077
Yichen Zhang, Guang Chen, Yiming Zang, Sridhar Bhavani, Bin Bai, Wei Liu, Miaomiao Zhao, Yikeng Cheng, Shunda Li, Wei Chen, Wenhao Yan, Hailiang Mao, Handong Su, Ravi P Singh, Evans Lagudah, Qiang Li, Caixia Lan
{"title":"Lr34/Yr18/Sr57/Pm38 confers broad-spectrum resistance to fungal diseases via sinapyl alcohol transport for cell wall lignification in wheat.","authors":"Yichen Zhang, Guang Chen, Yiming Zang, Sridhar Bhavani, Bin Bai, Wei Liu, Miaomiao Zhao, Yikeng Cheng, Shunda Li, Wei Chen, Wenhao Yan, Hailiang Mao, Handong Su, Ravi P Singh, Evans Lagudah, Qiang Li, Caixia Lan","doi":"10.1016/j.xplc.2024.101077","DOIUrl":"10.1016/j.xplc.2024.101077","url":null,"abstract":"<p><p>The widely recognized pleiotropic adult plant resistance gene Lr34 encodes an ATP-binding cassette transporter and plays an important role in breeding wheat for enhanced resistance to multiple fungal diseases. Despite its significance, the mechanisms underlying Lr34-mediated pathogen defense remain largely unknown. Our study demonstrates that wheat lines carrying the Lr34res allele exhibit thicker cell walls and enhanced resistance to fungal penetration compared to those without Lr34res. Transcriptome and metabolite profiling revealed that the lignin biosynthetic pathway is suppressed in lr34 mutants, indicating a disruption in cell wall lignification. Additionally, we discovered that lr34 mutant lines are hypersensitive to sinapyl alcohol, a major monolignol crucial for cell wall lignification. Yeast accumulation and efflux assays confirmed that the LR34 protein functions as a sinapyl alcohol transporter. Both genetic and virus-induced gene silencing experiments demonstrated that the disease resistance conferred by Lr34 can be enhanced by incorporating the TaCOMT-3B gene, which is responsible for the biosynthesis of sinapyl alcohol. Collectively, our findings provide novel insights into the role of Lr34 in disease resistance through mediating sinapyl alcohol transport and cell wall deposition, and highlight the synergistic effect of TaCOMT-3B and Lr34 against multiple fungal pathogens by mediating cell wall lignification in adult wheat plants.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The TATA-box binding protein-associated factor TAF12b facilitates the degradation of type B response regulators to negatively regulate cytokinin signaling. TATA-box 结合蛋白相关因子 TAF12b 可促进 B 型响应调节因子的降解,从而负向调节细胞分裂素信号转导。
IF 9.4 1区 生物学
Plant Communications Pub Date : 2024-09-02 DOI: 10.1016/j.xplc.2024.101076
Liu-Ming Guo, Jing Li, Pan-Pan Qi, Jie-Bing Wang, Hussein Ghanem, Ling Qing, Heng-Mu Zhang
{"title":"The TATA-box binding protein-associated factor TAF12b facilitates the degradation of type B response regulators to negatively regulate cytokinin signaling.","authors":"Liu-Ming Guo, Jing Li, Pan-Pan Qi, Jie-Bing Wang, Hussein Ghanem, Ling Qing, Heng-Mu Zhang","doi":"10.1016/j.xplc.2024.101076","DOIUrl":"10.1016/j.xplc.2024.101076","url":null,"abstract":"<p><p>Cytokinins (CKs) are one of the important classes of plant hormones essential for plant growth and development. TATA-box binding protein-associated factor 12b (TAF12b) is involved in CK signaling, but its molecular and biochemical mechanisms are not fully understood. In this study, TAF12b of Nicotiana benthamiana (NbTAF12b) was found to mediate the CK response by directly interacting with type B response regulators (B-RRs), positive regulators of CK signaling, and inhibiting their transcriptional activities. As a transcriptional co-factor, TAF12b specifically facilitated the proteasomal degradation of non-phosphorylated B-RRs by recruiting the KISS ME DEADLY family of F-box proteins. Such interactions between TAF12b and B-RRs also occur in other plant species. Genetic transformation experiments showed that overexpression of NbTAF12b attenuates the CK-hypersensitive phenotype conferred by NbRR1 overexpression. Taken together, these results suggest a conserved mechanism in which TAF12b negatively regulates CK responses by promoting 26S proteasome-mediated B-RR degradation in multiple plant species, providing novel insights into the regulatory network of CK signaling in plants.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental genome-wide association studies across precipitation regimes reveal that the E3 ubiquitin ligase MBR1 regulates plant adaptation to rainy environments. 全基因组环境关联研究揭示,E3泛素连接酶MBR1调节植物对多雨环境的适应。
IF 9.4 1区 生物学
Plant Communications Pub Date : 2024-08-31 DOI: 10.1016/j.xplc.2024.101074
Simone Castellana, Paolo Maria Triozzi, Matteo Dell'Acqua, Elena Loreti, Pierdomenico Perata
{"title":"Environmental genome-wide association studies across precipitation regimes reveal that the E3 ubiquitin ligase MBR1 regulates plant adaptation to rainy environments.","authors":"Simone Castellana, Paolo Maria Triozzi, Matteo Dell'Acqua, Elena Loreti, Pierdomenico Perata","doi":"10.1016/j.xplc.2024.101074","DOIUrl":"10.1016/j.xplc.2024.101074","url":null,"abstract":"<p><p>In an era characterized by rapidly changing and less-predictable weather conditions fueled by the climate crisis, understanding the mechanisms underlying local adaptation in plants is of paramount importance for the conservation of species. As the frequency and intensity of extreme precipitation events increase, so are the flooding events resulting from soil water saturation. The subsequent onset of hypoxic stress is one of the leading causes of crop damage and yield loss. By combining genomics and remote sensing data, it is now possible to probe natural plant populations that have evolved in different rainfall regimes and look for molecular adaptation to hypoxia. Here, using an environmental genome-wide association study (eGWAS) of 934 non-redundant georeferenced Arabidopsis ecotypes, we have identified functional variants of the gene MED25 BINDING RING-H2 PROTEIN 1 (MBR1). This gene encodes a ubiquitin-protein ligase that regulates MEDIATOR25 (MED25), part of a multiprotein complex that interacts with transcription factors that act as key drivers of the hypoxic response in Arabidopsis, namely the RELATED TO AP2 proteins RAP2.2 and RAP2.12. Through experimental validation, we show that natural variants of MBR1 have different effects on the stability of MED25 and, in turn, on hypoxia tolerance. This study also highlights the pivotal role of the MBR1/MED25 module in establishing a comprehensive hypoxic response. Our findings show that molecular candidates for plant environmental adaptation can be effectively mined from large datasets. This thus supports the need for integration of forward and reverse genetics with robust molecular physiology validation of outcomes.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The chloroplast pentatricopeptide repeat protein RCN22 regulates tiller number in rice by affecting sugar levels via the TB1-RCN22-RbcL module. 叶绿体五肽重复蛋白 RCN22 通过 TB1-RCN22-RbcL 模块影响糖分水平,从而调节水稻的分蘖数量。
IF 9.4 1区 生物学
Plant Communications Pub Date : 2024-08-28 DOI: 10.1016/j.xplc.2024.101073
Tianyu Mo, Tianhao Wang, Yinglu Sun, Ashmit Kumar, Humphrey Mkumbwa, Jingjing Fang, Jinfeng Zhao, Shoujiang Yuan, Zichao Li, Xueyong Li
{"title":"The chloroplast pentatricopeptide repeat protein RCN22 regulates tiller number in rice by affecting sugar levels via the TB1-RCN22-RbcL module.","authors":"Tianyu Mo, Tianhao Wang, Yinglu Sun, Ashmit Kumar, Humphrey Mkumbwa, Jingjing Fang, Jinfeng Zhao, Shoujiang Yuan, Zichao Li, Xueyong Li","doi":"10.1016/j.xplc.2024.101073","DOIUrl":"10.1016/j.xplc.2024.101073","url":null,"abstract":"<p><p>As an important yield component, rice tiller number controls panicle number and determines grain yield. Regulation of rice tiller number by chloroplast pentatricopeptide repeat (PPR) proteins has not been reported previously. Here, we report the rice reduced culm number22 (rcn22) mutant, which produces few tillers owing to suppressed tiller bud elongation. Map-based cloning revealed that RCN22 encodes a chloroplast-localized P-type PPR protein. We found that RCN22 specifically binds to the 5' UTR of RbcL mRNA (encoding the large subunit of Rubisco) and enhances its stability. The reduced abundance of RbcL mRNA in rcn22 leads to a lower photosynthetic rate and decreased sugar levels. Consequently, transcript levels of DWARF3 (D3) and TEOSINTE BRANCHED1 (TB1) (which encode negative regulators of tiller bud elongation) are increased, whereas protein levels of the positive regulator DWARF53 (D53) are decreased. Furthermore, high concentrations of sucrose can rescue the tiller bud growth defect of the rcn22 mutant. On the other hand, TB1 directly binds to the RCN22 promoter and downregulates its expression. The tb1/rcn22 double mutant shows a tillering phenotype similar to that of rcn22. Our results suggest that the TB1-RCN22-RbcL module plays a vital role in rice tiller bud elongation by affecting sugar levels.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine-tuning of the dual-role transcription factor WRKY8 via differential phosphorylation for robust broad-spectrum plant immunity. 通过不同的磷酸化微调双重作用转录因子 WRKY8,实现强大的广谱植物免疫。
IF 9.4 1区 生物学
Plant Communications Pub Date : 2024-08-27 DOI: 10.1016/j.xplc.2024.101072
Chun-Xiu Ren, Song-Yu Chen, Yu-Han He, You-Ping Xu, Juan Yang, Xin-Zhong Cai
{"title":"Fine-tuning of the dual-role transcription factor WRKY8 via differential phosphorylation for robust broad-spectrum plant immunity.","authors":"Chun-Xiu Ren, Song-Yu Chen, Yu-Han He, You-Ping Xu, Juan Yang, Xin-Zhong Cai","doi":"10.1016/j.xplc.2024.101072","DOIUrl":"10.1016/j.xplc.2024.101072","url":null,"abstract":"<p><p>Plants perceive pathogen-associated molecular patterns (PAMPs) using plasma-membrane-localized pattern recognition receptors (PRRs) to activate broad-spectrum pattern-triggered immunity. However, the regulatory mechanisms that ensure robust broad-spectrum plant immunity remain largely unknown. Here, we reveal that the transcription factor WRKY8 has a dual role in the transcriptional regulation of PRR genes: repressing expression of the nlp20/nlp24 receptor gene RLP23 while promoting that of the chitin receptor gene CERK1. SsNLP1 and SsNLP2, two nlp24-type PAMPs from the destructive fungal pathogen Sclerotinia sclerotiorum, activate two calcium-elicited kinases, CPK4 and CPK11, which phosphorylate WRKY8 and thus release its inhibition on RLP23 to promote accumulation of RLP23 transcripts. Meanwhile, SsNLPs activate the RLCK-type kinase PBL19, which phosphorylates WRKY8 and thus enhances accumulation of CERK1 transcripts. Intriguingly, RLP23 is repressed at later stage by PBL19-mediated phosphorylation of WRKY8, thus avoiding excessive immunity and enabling normal growth. Our findings unveil a plant strategy of \"killing two birds with one stone\" to elicit robust broad-spectrum immunity. This strategy is based on PAMP-triggered fine-tuning of a dual-role transcription factor to simultaneously amplify two PRRs that recognize PAMPs conserved across a wide range of pathogens. Moreover, our results reveal a novel plant strategy for balancing the trade-off between growth and immunity by fine-tuning the expression of multiple PRR genes.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SynDiv: An efficient tool for chromosome collinearity-based population genomics analyses. SynDiv:基于染色体共线性的群体基因组学分析的高效工具。
IF 9.4 1区 生物学
Plant Communications Pub Date : 2024-08-24 DOI: 10.1016/j.xplc.2024.101071
Ze-Zhen Du, Jia-Bao He, Wen-Biao Jiao
{"title":"SynDiv: An efficient tool for chromosome collinearity-based population genomics analyses.","authors":"Ze-Zhen Du, Jia-Bao He, Wen-Biao Jiao","doi":"10.1016/j.xplc.2024.101071","DOIUrl":"10.1016/j.xplc.2024.101071","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-scale production of rice haploids by combining superior haploid inducer with PTGMS lines. 通过将优良单倍体诱导剂与 PTGMS 株系相结合,大规模生产水稻单倍体。
IF 9.4 1区 生物学
Plant Communications Pub Date : 2024-08-23 DOI: 10.1016/j.xplc.2024.101067
Chaolei Liu, Song Yan, Fangming Mao, Tingting Sun, Huan Liang, Qing Liu, Qian Qian, Kejian Wang
{"title":"Large-scale production of rice haploids by combining superior haploid inducer with PTGMS lines.","authors":"Chaolei Liu, Song Yan, Fangming Mao, Tingting Sun, Huan Liang, Qing Liu, Qian Qian, Kejian Wang","doi":"10.1016/j.xplc.2024.101067","DOIUrl":"10.1016/j.xplc.2024.101067","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GENOMES UNCOUPLED PROTEIN1 binds to plastid RNAs and promotes their maturation. GENOMES UNCOUPLED PROTEIN1 与质体 RNA 结合并促进其成熟。
IF 9.4 1区 生物学
Plant Communications Pub Date : 2024-08-22 DOI: 10.1016/j.xplc.2024.101069
Qian Tang, Duorong Xu, Benjamin Lenzen, Andreas Brachmann, Madhura M Yapa, Paymon Doroodian, Christian Schmitz-Linneweber, Tatsuru Masuda, Zhihua Hua, Dario Leister, Tatjana Kleine
{"title":"GENOMES UNCOUPLED PROTEIN1 binds to plastid RNAs and promotes their maturation.","authors":"Qian Tang, Duorong Xu, Benjamin Lenzen, Andreas Brachmann, Madhura M Yapa, Paymon Doroodian, Christian Schmitz-Linneweber, Tatsuru Masuda, Zhihua Hua, Dario Leister, Tatjana Kleine","doi":"10.1016/j.xplc.2024.101069","DOIUrl":"10.1016/j.xplc.2024.101069","url":null,"abstract":"<p><p>Plastid biogenesis and the coordination of plastid and nuclear genome expression through anterograde and retrograde signaling are essential for plant development. GENOMES UNCOUPLED1 (GUN1) plays a central role in retrograde signaling during early plant development. The putative function of GUN1 has been extensively studied, but its molecular function remains controversial. Here, we evaluate published transcriptome data and generate our own data from gun1 mutants grown under signaling-relevant conditions to show that editing and splicing are not relevant for GUN1-dependent retrograde signaling. Our study of the plastid (post)transcriptome of gun1 seedlings with white and pale cotyledons demonstrates that GUN1 deficiency significantly alters the entire plastid transcriptome. By combining this result with a pentatricopeptide repeat code-based prediction and experimental validation by RNA immunoprecipitation experiments, we identified several putative targets of GUN1, including tRNAs and RNAs derived from ycf1.2, rpoC1, and rpoC2 and the ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD gene cluster. The absence of plastid rRNAs and the significant reduction of almost all plastid transcripts in white gun1 mutants account for the cotyledon phenotype. Our study provides evidence for RNA binding and maturation as the long-sought molecular function of GUN1 and resolves long-standing controversies. We anticipate that our findings will serve as a basis for subsequent studies on mechanisms of plastid gene expression and will help to elucidate the function of GUN1 in retrograde signaling.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An integrated pipeline facilitates fast cloning of a new powdery mildew resistance gene from the wheat wild relative Aegilops umbellulata. 集成管道有助于快速克隆小麦野生近缘种 Aegilops umbellulata 的抗白粉病新基因。
IF 9.4 1区 生物学
Plant Communications Pub Date : 2024-08-22 DOI: 10.1016/j.xplc.2024.101070
Huagang He, Jiale Wang, Jiabao Liang, Qianyuan Zhang, Minfeng Xue, Zhaozhao Chen, Qiulian Tang, Xiaobei Chen, Shanying Zhu, Yajun Wang
{"title":"An integrated pipeline facilitates fast cloning of a new powdery mildew resistance gene from the wheat wild relative Aegilops umbellulata.","authors":"Huagang He, Jiale Wang, Jiabao Liang, Qianyuan Zhang, Minfeng Xue, Zhaozhao Chen, Qiulian Tang, Xiaobei Chen, Shanying Zhu, Yajun Wang","doi":"10.1016/j.xplc.2024.101070","DOIUrl":"10.1016/j.xplc.2024.101070","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Landrace introgression contributed to the recent feralization of weedy rice in East China. 陆稻引种导致了华东地区杂交水稻的近代野化。
IF 9.4 1区 生物学
Plant Communications Pub Date : 2024-08-22 DOI: 10.1016/j.xplc.2024.101066
Min Zhu, Kaicheng Yong, Kai Xu, Jia Cong, Xiaofang Zhou, Keyue Liu, Xuechen Wang, Longjiang Fan, Kenneth M Olsen, Xuehui Huang, Xiaoyi Zhou, Jie Qiu
{"title":"Landrace introgression contributed to the recent feralization of weedy rice in East China.","authors":"Min Zhu, Kaicheng Yong, Kai Xu, Jia Cong, Xiaofang Zhou, Keyue Liu, Xuechen Wang, Longjiang Fan, Kenneth M Olsen, Xuehui Huang, Xiaoyi Zhou, Jie Qiu","doi":"10.1016/j.xplc.2024.101066","DOIUrl":"10.1016/j.xplc.2024.101066","url":null,"abstract":"","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信