植物生物设计的可编程基因组工程和基因修饰。

IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Communications Pub Date : 2025-08-11 Epub Date: 2025-06-24 DOI:10.1016/j.xplc.2025.101427
Jialin Liu, Ruixiang Zhang, Nan Chai, Liying Su, Zhiye Zheng, Taoli Liu, Ziming Guo, Yuanhao Ma, Yongyao Xie, Xianrong Xie, Qiupeng Lin, Letian Chen, Yao-Guang Liu, Qinlong Zhu
{"title":"植物生物设计的可编程基因组工程和基因修饰。","authors":"Jialin Liu, Ruixiang Zhang, Nan Chai, Liying Su, Zhiye Zheng, Taoli Liu, Ziming Guo, Yuanhao Ma, Yongyao Xie, Xianrong Xie, Qiupeng Lin, Letian Chen, Yao-Guang Liu, Qinlong Zhu","doi":"10.1016/j.xplc.2025.101427","DOIUrl":null,"url":null,"abstract":"<p><p>Plant science has entered a transformative era as genome editing enables precise DNA modifications to address global challenges such as climate adaptation and food security. These modifications are primarily driven by the integration of three modular components-DNA-targeting modules, effector modules, and control modules-that can be selectively activated or suppressed. The field has evolved from protein-based systems (e.g., zinc finger nucleases and transcription activator-like effector nucleases) to RNA-guided systems (e.g., CRISPR-Cas) that can control both genetic and epigenetic states. Modular pairing of DNA-targeting and effector domains, with or without inducible control, enables precise transcriptional regulation and chromatin remodeling. The present review examines these three modules and highlights strategies for their optimization. It also outlines innovative tools, such as optogenetic and receptor-integrated systems, that enable spatiotemporal control over genome editor expression. These modular approaches bypass traditional limitations and allow scientists to create plants with desirable traits, decipher complex gene networks, and promote sustainable agriculture.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101427"},"PeriodicalIF":11.6000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365832/pdf/","citationCount":"0","resultStr":"{\"title\":\"Programmable genome engineering and gene modifications for plant biodesign.\",\"authors\":\"Jialin Liu, Ruixiang Zhang, Nan Chai, Liying Su, Zhiye Zheng, Taoli Liu, Ziming Guo, Yuanhao Ma, Yongyao Xie, Xianrong Xie, Qiupeng Lin, Letian Chen, Yao-Guang Liu, Qinlong Zhu\",\"doi\":\"10.1016/j.xplc.2025.101427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant science has entered a transformative era as genome editing enables precise DNA modifications to address global challenges such as climate adaptation and food security. These modifications are primarily driven by the integration of three modular components-DNA-targeting modules, effector modules, and control modules-that can be selectively activated or suppressed. The field has evolved from protein-based systems (e.g., zinc finger nucleases and transcription activator-like effector nucleases) to RNA-guided systems (e.g., CRISPR-Cas) that can control both genetic and epigenetic states. Modular pairing of DNA-targeting and effector domains, with or without inducible control, enables precise transcriptional regulation and chromatin remodeling. The present review examines these three modules and highlights strategies for their optimization. It also outlines innovative tools, such as optogenetic and receptor-integrated systems, that enable spatiotemporal control over genome editor expression. These modular approaches bypass traditional limitations and allow scientists to create plants with desirable traits, decipher complex gene networks, and promote sustainable agriculture.</p>\",\"PeriodicalId\":52373,\"journal\":{\"name\":\"Plant Communications\",\"volume\":\" \",\"pages\":\"101427\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xplc.2025.101427\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2025.101427","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

植物科学已经进入了基因组编辑的变革时代,通过精确的DNA改变来应对气候适应性和食品安全等全球挑战。这些改变主要是由三个模块组件的集成驱动的,这些组件可以被激活或抑制:dna靶向模块,效应模块和控制模块。该领域已经从以蛋白质为中心的系统(锌指核酸酶和转录激活物样效应核酸酶)发展到以rna为中心的平台(CRISPR-Cas和其他核酸酶),这些平台促进了对遗传和表观遗传背景的多种控制。与效应域配对的dna靶向模块的模块化设计,有或没有诱导系统,为科学家提供了调节转录和改变染色质状态的卓越精度。这篇综述文章考察了这三个模块,并重点介绍了各种优化方法。此外,它概述了创新的工具,如光遗传系统和受体集成系统,使基因组编辑器表达的时空控制。这些模块化的仪器克服了传统的界限,使科学家能够创造出具有有利特征的植物,破译复杂的基因网络,并采用可持续的农业实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Programmable genome engineering and gene modifications for plant biodesign.

Plant science has entered a transformative era as genome editing enables precise DNA modifications to address global challenges such as climate adaptation and food security. These modifications are primarily driven by the integration of three modular components-DNA-targeting modules, effector modules, and control modules-that can be selectively activated or suppressed. The field has evolved from protein-based systems (e.g., zinc finger nucleases and transcription activator-like effector nucleases) to RNA-guided systems (e.g., CRISPR-Cas) that can control both genetic and epigenetic states. Modular pairing of DNA-targeting and effector domains, with or without inducible control, enables precise transcriptional regulation and chromatin remodeling. The present review examines these three modules and highlights strategies for their optimization. It also outlines innovative tools, such as optogenetic and receptor-integrated systems, that enable spatiotemporal control over genome editor expression. These modular approaches bypass traditional limitations and allow scientists to create plants with desirable traits, decipher complex gene networks, and promote sustainable agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Communications
Plant Communications Agricultural and Biological Sciences-Plant Science
CiteScore
15.70
自引率
5.70%
发文量
105
审稿时长
6 weeks
期刊介绍: Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信