OsBRK1-mediated phosphorylation of OsPFN2 regulates meiotic spindle-actin assembly and rice fertility.

IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Communications Pub Date : 2025-08-11 Epub Date: 2025-06-13 DOI:10.1016/j.xplc.2025.101417
Hai Zheng, Zhigang Zhao, Shanshan Zhu, Yulong Ren, Jiangfeng Shen, Ziqi Xun, Xiaowen Yu, Chaolong Wang, Bowen Yao, Siqi Cheng, Yang Hu, Shihao Zhang, Qiming Wang, Jiayu Lu, Zhenwei Xie, Dekun Lei, Anqi Jian, Minrui Chen, Keyi Chen, Shijia Liu, Xi Liu, Yunlu Tian, Lin Jiang, Zhijun Cheng, Cailin Lei, Qibing Lin, Xiupin Guo, Xin Wang, Chuanyin Wu, Haiyang Wang, Shanjin Huang, Jianmin Wan
{"title":"OsBRK1-mediated phosphorylation of OsPFN2 regulates meiotic spindle-actin assembly and rice fertility.","authors":"Hai Zheng, Zhigang Zhao, Shanshan Zhu, Yulong Ren, Jiangfeng Shen, Ziqi Xun, Xiaowen Yu, Chaolong Wang, Bowen Yao, Siqi Cheng, Yang Hu, Shihao Zhang, Qiming Wang, Jiayu Lu, Zhenwei Xie, Dekun Lei, Anqi Jian, Minrui Chen, Keyi Chen, Shijia Liu, Xi Liu, Yunlu Tian, Lin Jiang, Zhijun Cheng, Cailin Lei, Qibing Lin, Xiupin Guo, Xin Wang, Chuanyin Wu, Haiyang Wang, Shanjin Huang, Jianmin Wan","doi":"10.1016/j.xplc.2025.101417","DOIUrl":null,"url":null,"abstract":"<p><p>Formation of a meiotic spindle structure is crucial for chromosome segregation and fertility in plants. Previous studies have shown that actin decorates spindle microtubules in mammalian oocytes, forming spindle actin, which is indispensable for genome stability and gamete segregation. However, the regulatory mechanisms that underlie spindle-actin assembly remain unknown. Here, we report that dysfunction of OsPFN2, a rice profilin protein, disrupts meiotic spindle-actin assembly and spindle microtubule structure and causes errors in chromosome alignment and segregation in pollen mother cells, resulting in male sterility. Furthermore, our results demonstrate that OsPFN2 interacts with Rice Morphology Determinant (OsRMD), a rice formin protein whose depletion also affects spindle-actin assembly and the structure of meiotic spindle microtubules. Intriguingly, we identified an interaction between OsPFN2 and Bub1-Related Kinase 1 (OsBRK1) and demonstrated that OsBRK1 depletion enhances spindle-actin assembly. In addition, we found that OsBRK1 phosphorylates OsPFN2 and that the resulting phosphorylated OsPFN2 retains its capability to bind actin. However, these phospho-mimetic actin-OsPFN2 complexes are not used by OsRMD. Our findings thus reveal that the OsPFN2-OsRMD module controls the assembly of meiotic spindle actin and that OsBRK1 fine-tunes this process through phosphorylation of OsPFN2.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101417"},"PeriodicalIF":11.6000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2025.101417","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Formation of a meiotic spindle structure is crucial for chromosome segregation and fertility in plants. Previous studies have shown that actin decorates spindle microtubules in mammalian oocytes, forming spindle actin, which is indispensable for genome stability and gamete segregation. However, the regulatory mechanisms that underlie spindle-actin assembly remain unknown. Here, we report that dysfunction of OsPFN2, a rice profilin protein, disrupts meiotic spindle-actin assembly and spindle microtubule structure and causes errors in chromosome alignment and segregation in pollen mother cells, resulting in male sterility. Furthermore, our results demonstrate that OsPFN2 interacts with Rice Morphology Determinant (OsRMD), a rice formin protein whose depletion also affects spindle-actin assembly and the structure of meiotic spindle microtubules. Intriguingly, we identified an interaction between OsPFN2 and Bub1-Related Kinase 1 (OsBRK1) and demonstrated that OsBRK1 depletion enhances spindle-actin assembly. In addition, we found that OsBRK1 phosphorylates OsPFN2 and that the resulting phosphorylated OsPFN2 retains its capability to bind actin. However, these phospho-mimetic actin-OsPFN2 complexes are not used by OsRMD. Our findings thus reveal that the OsPFN2-OsRMD module controls the assembly of meiotic spindle actin and that OsBRK1 fine-tunes this process through phosphorylation of OsPFN2.

osbrk1介导的OsPFN2磷酸化调节减数分裂纺锤体肌动蛋白组装和水稻育性。
减数分裂纺锤体结构的形成对染色体分离和植物的育性至关重要。先前的研究表明,肌动蛋白修饰哺乳动物卵母细胞的纺锤体微管,形成纺锤体肌动蛋白,这对于基因组稳定和配子分离是必不可少的。然而,纺锤体肌动蛋白组装的调控机制尚不清楚。在这里,我们报道了水稻谱蛋白OsPFN2的功能障碍,破坏减数分裂纺锤体肌动蛋白组装和纺锤体微管结构,导致花粉母细胞(PMCs)染色体排列和分离错误,导致雄性不育。此外,我们的研究结果表明,OsPFN2与水稻形态决定因子(OsRMD)相互作用,OsRMD是水稻中的一种双formin蛋白,其缺失也影响纺锤体肌动蛋白组装和减数分裂纺锤体微管结构。有趣的是,我们发现了OsPFN2和bub1相关激酶1 (OsBRK1)之间的相互作用,并证明OsBRK1的缺失增强了纺锤体肌动蛋白的组装。此外,我们发现OsBRK1磷酸化了OsPFN2,并且由此产生的磷酸化模拟OsPFN2保留了其结合肌动蛋白的能力。然而,OsRMD不利用这些磷酸化模拟actin-OsPFN2复合物。因此,我们的研究结果表明,OsPFN2- osrmd模块控制减数分裂纺锤体肌动蛋白组装,而OsBRK1通过磷酸化OsPFN2对这一过程进行微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Communications
Plant Communications Agricultural and Biological Sciences-Plant Science
CiteScore
15.70
自引率
5.70%
发文量
105
审稿时长
6 weeks
期刊介绍: Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信