Ralfs Pomilovskis , Eliza Kaulina , Inese Mierina , Arnis Abolins , Olga Kockova , Anda Fridrihsone , Mikelis Kirpluks
{"title":"Wood pulp industry by-product valorization for acrylate synthesis and bio-based polymer development via Michael addition reaction","authors":"Ralfs Pomilovskis , Eliza Kaulina , Inese Mierina , Arnis Abolins , Olga Kockova , Anda Fridrihsone , Mikelis Kirpluks","doi":"10.1016/j.jobab.2023.06.001","DOIUrl":"https://doi.org/10.1016/j.jobab.2023.06.001","url":null,"abstract":"<div><p>It is crucial to adapt the processing of forest bio-resources into biochemicals and bio-based advanced materials in order to transform the current economic climate into a greener economy. Tall oil, as a by-product of the Kraft process of wood pulp manufacture, is a promising resource for the extraction of various value-added products. Tall oil fatty acids-based multifunctional Michael acceptor acrylates were developed. The suitability of developed acrylates for polymerization with tall oil fatty acids-based Michael donor acetoacetates to form a highly cross-linked polymer material via the Michael addition was investigated. With this novel strategy, valuable chemicals and innovative polymer materials can be produced from tall oil in an entirely new way, making a significant contribution to the development of a forest-based bioeconomy. Two different tall oil-based acrylates were successfully synthesized and characterized. Synthesized acrylates were successfully used in the synthesis of bio-based thermoset polymers. Obtained polymers had a wide variety of mechanical and thermal properties (glass transition temperature from –12.1 to 29.6 °C by dynamic mechanical analysis, Young's modulus from 15 to 1 760 MPa, and stress at break from 0.9 to 16.1 MPa). Gel permeation chromatography, Fourier-transform infrared (FT-IR) spectroscopy, matrix-assisted laser desorption/ionization-time of flight mass spectrometry, and nuclear magnetic resonance were used to analyse the chemical structure of synthesized acrylates. In addition, various titration methods and rheology tests were applied to characterize acrylates. The chemical composition and thermal and mechanical properties of the developed polymers were studied by using FT-IR, solid-state nuclear magnetic resonance, thermal gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, and universal strength testing apparatus.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"8 3","pages":"Pages 265-279"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49904499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yilin Wang , Jin Wu , Ruihan Shen , Yubao Li , Guofeng Ma , Shuang Qi , Wenjuan Wu , Yongcan Jin , Bo Jiang
{"title":"A mild iodocyclohexane demethylation for highly enhancing antioxidant activity of lignin","authors":"Yilin Wang , Jin Wu , Ruihan Shen , Yubao Li , Guofeng Ma , Shuang Qi , Wenjuan Wu , Yongcan Jin , Bo Jiang","doi":"10.1016/j.jobab.2023.05.001","DOIUrl":"10.1016/j.jobab.2023.05.001","url":null,"abstract":"<div><p>Lignin, as a natural antioxidant, shows great potential in food engineering and medicine. However, the inherent macromolecular structure, high polydispersity, and few phenolic hydroxy seriously limit its antioxidant activity. In this work, a mild iodocyclohexane demethylation for highly improving the antioxidant activity of lignin was proposed. The results showed –OCH<sub>3</sub> content exhibited an almost linear decrease as a function of treating time, and the demethylation and cleavage of <em>β</em>–aryl ether bonds prompt an obvious increase in phenolic hydroxyl content (4.01 mmol/g) and a significant decline in aliphatic hydroxyl (∼0.03 mmol/g). Meanwhile, attributing to the fragmentation of <em>β</em>–O–4, <em>β</em>–<em>β</em>, and <em>β</em>–5 substructures, the polydispersity of lignin molecular weight decreases from 2.7 to 2.2. As a result, the formed catechol-typed lignin showed an outstanding antioxidant activity, with the radical (DPPH·) scavenging index (inverse of concentration for 50% of maximal effect (EC<sub>50</sub>) value) over 2 000 mL/mg, much superior to the commercial antioxidants (< 500 mL/mg). Further structure-activity relationship analysis implied that the Ph–OH/–OCH<sub>3</sub> ratio might act as a key factor influencing the antioxidant activity of lignin. This mild demethylation demonstrates a facile and effective method for highly enhancing the antioxidant activity of lignin and makes the catechol-typed lignin a green and promising product for practical use in food, medicine, and pharmacy.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"8 3","pages":"Pages 306-317"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42353941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-situ polymerization of lignocelluloses of autohydrolysis process with acrylamide","authors":"Haosong Zhao, Weijue Gao, Pedram Fatehi","doi":"10.1016/j.jobab.2023.01.004","DOIUrl":"10.1016/j.jobab.2023.01.004","url":null,"abstract":"<div><p>In the present study, the hydrolysates generated <em>via</em> autohydrolysis of spruce wood chips were directly used as feedstock for producing coagulants. The <em>in-situ</em> polymerization of acrylamide (AM) and lignocellulose (LC) of hydrolysates was successfully conducted. The reaction was optimized to generate lignocellulose-acrylamide (LC-AM) with the highest molecular weight (41,060 g/mol) and charge density (–0.25 meq/g) under the optimum conditions, which were 3 h, 60 ℃, 4% (<em>w</em>) initiator based on the dried mass of hydrolysate, and an AM/LC molar ratio of 5.63. A nuclear magnetic resonance (NMR) spectroscopy confirmed the grafting of acrylamide on LC. Other properties of LC-AM were characterized by the elemental analyzer, zeta potential analyzer, gel permeation chromatography (GPC), and particle charge detector (PCD). The LC-AM was applied as a coagulant for removing ethyl violet dye from a simulated dye solution. The results indicated that 47.2% dye was removed from the solution at a low dosage of 0.2 g/g. The dual flocculation of LC-AM with other polymers for dye removal is suggested to further improve its effectiveness.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"8 3","pages":"Pages 235-245"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41947884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenyang Cai, Yuanbo Sun, Yi Chen, Zechang Wei, Yibo Wang, Fuling Chen, Wanquan Cai, Jiawen Ji, Yuxin Ji, Yu Fu
{"title":"Large scalable, ultrathin and self-cleaning cellulose aerogel film for daytime radiative cooling","authors":"Chenyang Cai, Yuanbo Sun, Yi Chen, Zechang Wei, Yibo Wang, Fuling Chen, Wanquan Cai, Jiawen Ji, Yuxin Ji, Yu Fu","doi":"10.1016/j.jobab.2023.06.004","DOIUrl":"10.1016/j.jobab.2023.06.004","url":null,"abstract":"<div><p>Passive cooling strategy shows great potential in mitigating global warming and reducing energy consumption. Because of the high emissivity in the atmospheric transparency window (λ ≈ 8–13 µm), cellulose is considered as a good candidate for radiative cooling. However, traditional cellulose coolers generally show poor solar reflection and can be polluted by dust outside, thereby resulting in poor daytime cooling efficiency. To address these drawbacks, we developed sustainable cellulose nanowhiskers (CNWs)/ZnO composite aerogel films with favorable optical performance, mechanical robustness, and self-cleaning function for efficient daytime radiative cooling, which can be achieved <em>via</em> freeze casting and hot-pressing process. Due to formation of multi-level porous structure and chemical bonds (Si-O-C/Si-O-Si), such aerogel film exhibited high solar reflectance (97%) and high infrared emittance (92.5%). It achieved a sub-ambient temperature drop of 6.9 °C under direct sunlight in hot weather. Most importantly, the surface roughness and low surface energy enable cellulose aerogel film hydrophobicity (contact angle = 133°), thereby resulting in an anti-dust function. This work provides insight into the design of sustainable thermal regulating materials to realize carbon neutrality.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"8 4","pages":"Pages 421-429"},"PeriodicalIF":0.0,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48906746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sariah Abang , Farrah Wong , Rosalam Sarbatly , Jamilah Sariau , Rubiyah Baini , Normah Awang Besar
{"title":"Bioplastic classifications and innovations in antibacterial, antifungal, and antioxidant applications","authors":"Sariah Abang , Farrah Wong , Rosalam Sarbatly , Jamilah Sariau , Rubiyah Baini , Normah Awang Besar","doi":"10.1016/j.jobab.2023.06.005","DOIUrl":"10.1016/j.jobab.2023.06.005","url":null,"abstract":"<div><p>Conventional plastics exacerbate climate change by generating substantial amounts of greenhouse gases and solid wastes throughout their lifecycle. To address the environmental and economic challenges associated with petroleum-based plastics, bioplastics have emerged as a viable alternative. Bioplastics are a type of plastic that are either biobased, biodegradable, or both. Due to their biodegradability and renewability, bioplastics are established as earth-friendly materials that can replace nonrenewable plastics. However, early bioplastic development has been hindered by higher production costs and inferior mechanical and barrier properties compared to conventional plastics. Nevertheless, studies have shown that the addition of additives and fillers can enhance bioplastic properties. Recent advancements in bioplastics have incorporated special additives like antibacterial, antifungal, and antioxidant agents, offering added values and unique properties for specific applications in various sectors. For instance, integrating antibacterial additives into bioplastics enables the creation of active food packaging, extending the shelf-life of food by inhibiting spoilage-causing bacteria and microorganisms. Moreover, bioplastics with antioxidant additives can be applied in wound dressings, accelerating wound healing by preventing oxidative damage to cells and tissues. These innovative bioplastic developments offer promising opportunities for developing sustainable and practical solutions in various fields. Within this review are two main focuses: an outline of the bioplastic classifications to understand how they fit in as the coveted conventional plastics substitute and an overview of the recent bioplastic innovations in the antibacterial, antifungal, and antioxidant applications. We cover the use of different polymers and additives, presenting the findings and potential applications within the last decade. Although current research primarily focuses on food packaging and biomedicine, the exploration of bioplastics with specialized properties is still in its early stages, offering a wide range of undiscovered opportunities.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"8 4","pages":"Pages 361-387"},"PeriodicalIF":0.0,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45902463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tharindu N. Karunaratne , Prashan M. Rodrigo , Daniel O. Oguntuyi , Todd E. Mlsna , Jilei Zhang , Xuefeng Zhang
{"title":"Unraveling biochar surface area on structure and heavy metal removal performances of carbothermal reduced nanoscale zero-valent iron","authors":"Tharindu N. Karunaratne , Prashan M. Rodrigo , Daniel O. Oguntuyi , Todd E. Mlsna , Jilei Zhang , Xuefeng Zhang","doi":"10.1016/j.jobab.2023.06.003","DOIUrl":"10.1016/j.jobab.2023.06.003","url":null,"abstract":"<div><p>Carbothermal reduction using biochar (BC) is a green and effective method of synthesizing BC-supported nanoscale zero-valent iron (nanoFe<sup>0</sup>) composites. However, the effect of BC surface area on the structure, distribution, and performance such as the heavy metal uptake capacity of nanoFe<sup>0</sup> particles remains unclear. Soybean stover-based BCs with different surface areas (1.7 − 1 472 m<sup>2</sup>/g) were prepared in this study. They have been used for in-situ synthesis BCs-supported nanoFe<sup>0</sup> particles through carbothermal reduction of ferrous chloride. The BCs-supported nanoFe<sup>0</sup> particles were found to be covered with graphene shells and dispersed onto BC surfaces, forming the BC-supported graphene-encapsulated nanoFe<sup>0</sup> (BC-G@Fe<sup>0</sup>) composite. These graphene shells covering the nanoFe<sup>0</sup> particles were formed because of gaseous carbon evolved from biomass carbonization reacting with iron oxides/iron salts. Increasing BC surface area decreased the average diameters of nanoFe<sup>0</sup> particles, indicating a higher BC surface area alleviated the aggregation of nanoFe<sup>0</sup> particles, which resulted in higher heavy metal uptake capacity. At the optimized condition, BC-G@Fe<sup>0</sup> composite exhibited uptake capacities of 124.4, 121.8, 254.5, and 48.0 mg/g for Cu<sup>2+</sup>, Pb<sup>2+</sup>, Ag<sup>+</sup>, and As<sup>3+</sup>, respectively (pH 5, 25 °C). Moreover, the BC-G@Fe<sup>0</sup> composite also demonstrated high stability for Cu<sup>2+</sup> removal from the fixed-bed continuous flow, in which 1 g of BC-G@Fe<sup>0</sup> can work for 120 h in a 4 mg/L Cu<sup>2+</sup> flow continually and clean 28.6 L Cu<sup>2+</sup> contaminated water. Furthermore, the BC-G@Fe<sup>0</sup> composite can effectively immobilize the bioavailable As<sup>3+</sup> from the contaminated soil, i.e., 5% (<em>w</em>) of BC-G@Fe<sup>0</sup> composite addition can immobilize up to 92.2% bioavailable As<sup>3+</sup> from the contaminated soil.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"8 4","pages":"Pages 388-398"},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45934722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in thermochemical conversion of woody biomass for production of green hydrogen and CO2 capture: A review","authors":"Shusheng Pang","doi":"10.1016/j.jobab.2023.06.002","DOIUrl":"10.1016/j.jobab.2023.06.002","url":null,"abstract":"<div><p>Hydrogen as a clean energy carrier has attracted great interests world-wide for substitution of fossil fuels and for abatement of the climate change concerns. However, green hydrogen from renewable resources is less than 0.1% at present in the world hydrogen production and this is largely from water electrolysis which is beneficial only when renewable electricity is used. Hydrogen production from diverse renewable resources is desirable. This review presents recent advances in hydrogen production from woody biomass through biomass steam gasification, producer gas processing and H<sub>2</sub>/CO<sub>2</sub> separation. The producer gas processing includes steam-methane reforming (SMR) and water-gas shift (WGS) reactions to convert CH<sub>4</sub> and CO in the producer gas to H<sub>2</sub> and CO<sub>2</sub>. The H<sub>2</sub> storage discussed using liquid carrier through hydrogenation is also discussed. The CO<sub>2</sub> capture prior to the SMR is investigated to enhance H<sub>2</sub> yield in the SMR and the WGS reactions.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"8 4","pages":"Pages 319-332"},"PeriodicalIF":0.0,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44814287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ralfs Pomilovskis, Elīza Kauliņa, I. Mieriņa, A. Āboliņš, Olga Kockova, A. Fridrihsone, M. Kirpluks
{"title":"Wood Pulp Industry By-Product Valorisation for Acrylate Synthesis and Bio-Based Polymer Development Via Michael Addition Reaction","authors":"Ralfs Pomilovskis, Elīza Kauliņa, I. Mieriņa, A. Āboliņš, Olga Kockova, A. Fridrihsone, M. Kirpluks","doi":"10.1016/j.jobab.2023.06.001","DOIUrl":"https://doi.org/10.1016/j.jobab.2023.06.001","url":null,"abstract":"","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47686318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hesam Salimi Shahraki , Rani Bushra , Nimra Shakeel , Anees Ahmad , Quratulen , Mehraj Ahmad , Christos Ritzoulis
{"title":"Papaya peel waste carbon dots/reduced graphene oxide nanocomposite: From photocatalytic decomposition of methylene blue to antimicrobial activity","authors":"Hesam Salimi Shahraki , Rani Bushra , Nimra Shakeel , Anees Ahmad , Quratulen , Mehraj Ahmad , Christos Ritzoulis","doi":"10.1016/j.jobab.2023.01.009","DOIUrl":"10.1016/j.jobab.2023.01.009","url":null,"abstract":"<div><p>Carbon dots (CDs) have gained unprecedented attention as a novel luminescent zero-dimensional carbon nanomaterial owing to their diverse industrial applications. Herein, we reported the sustainable synthesis of fluorescent CDs from papaya peel waste, acting as a natural carbon originator. As-prepared CDs and reduced graphene oxide (RGO) were fabricated in the composites through a facile one-step hydrothermal method. Synthesized RGO/CDs (RC) nanocomposites were characterized using spectroscopic, diffraction, and electron-microscopic techniques. Nanocomposites with variable RGO to CD mass ratios were tested for photodegradation of textile dye methylene blue (MB). The highest photocatalytic activity (degradation efficiency of 87% in 135 min) was obtained in the nanocomposite containing a 2꞉1 mass ratio (RC2). The RGO sheets in the nanocomposite acted as media for electron acceptors, promoting the fast transfer and separation of photoinduced electrons during CDs excitation, thus preventing the recombination of the electron and holes. Based on the agar well diffusion assay, the nanocomposites exhibited excellent antibacterial activity than other tested materials against Bacillus subtilis (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) bacterium. The largest inhibition zone area (22 mm), i.e., the highest antimicrobial activity, was obtained in the nanocomposite tested against Gram-positive strains. Taken together, the synergistic effect of RGO and CDs enhanced the photocatalytic and antibacterial performance of synthesized nanocomposite material.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"8 2","pages":"Pages 162-175"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45576754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Akansha Shrivastava , Mamta Pal , Rakesh Kumar Sharma
{"title":"Pichia as yeast cell factory for production of industrially important bio-products: Current trends, challenges, and future prospects","authors":"Akansha Shrivastava , Mamta Pal , Rakesh Kumar Sharma","doi":"10.1016/j.jobab.2023.01.007","DOIUrl":"10.1016/j.jobab.2023.01.007","url":null,"abstract":"<div><p>Yeast has been used as a cell factory for thousands of years to produce a wide variety of complex biofuels, bioproducts, biochemicals, food ingredients, and pharmaceuticals. For a variety of biotechnological production hosts, a few specific genera of yeast have proven themselves. Rapid developments in metabolic engineering and synthetic biology provide a workable long-term supply solution for these substances. In this review, we have covered recent advances in the design of yeast cell factories for the synthesis of terpenoids, alkaloids, phenylpropanoids, and other natural chemicals, primarily focusing on <em>Pichia</em> species. Cutting-edge solutions involving genetic and process engineering have also been discussed. Overall, the review summarized recent advancements and challenges in synthetic and systems biology, as well as initiatives in metabolic engineering aimed at commercializing non-conventional yeasts like <em>Pichia</em>. The processes used in non-traditional yeasts to produce enzymes, therapeutic proteins, lipids, and metabolic products for industrial applications were thoroughly elaborated.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"8 2","pages":"Pages 108-124"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44402971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}