{"title":"Selective activation of CC bonds in lignin model compounds and lignin for production of value-added chemicals","authors":"","doi":"10.1016/j.jobab.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>Lignin is a rich renewable aromatic resource that can produce high-value-added chemicals. Lignin is regarded as one of the three major components of lignocellulosic biomass, which is composed of phenylpropane units connected by C<img>O bond and C<img>C bond. The cleavage of two chemical bonds is the main catalytic pathway in the production of chemicals and fuels from lignin. Although the cleavage of C<img>O converts lignin into valuable aromatic compounds and renewable carbon sources, selective depolymerization for C<img>C bonds is an important method to increase the yield of aromatic monomers. Therefore, in this review, we summarized the latest research trends on C<img>C bond selective cleavage in lignin and lignin model compounds, focusing on various catalytic systems, including hydrogenolysis, oxidate, photocatalysis, and electrocatalysis. By analyzing the current status of C<img>C bond breakage, the core issues and challenges related to this process and the expectations for future research were emphasized.</div></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":"9 4","pages":"Pages 433-464"},"PeriodicalIF":20.2000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2369969824000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Lignin is a rich renewable aromatic resource that can produce high-value-added chemicals. Lignin is regarded as one of the three major components of lignocellulosic biomass, which is composed of phenylpropane units connected by CO bond and CC bond. The cleavage of two chemical bonds is the main catalytic pathway in the production of chemicals and fuels from lignin. Although the cleavage of CO converts lignin into valuable aromatic compounds and renewable carbon sources, selective depolymerization for CC bonds is an important method to increase the yield of aromatic monomers. Therefore, in this review, we summarized the latest research trends on CC bond selective cleavage in lignin and lignin model compounds, focusing on various catalytic systems, including hydrogenolysis, oxidate, photocatalysis, and electrocatalysis. By analyzing the current status of CC bond breakage, the core issues and challenges related to this process and the expectations for future research were emphasized.
木质素是一种丰富的可再生芳香资源,可生产高附加值化学品。木质素被认为是木质纤维素生物质的三大主要成分之一,由通过 CO 键和 CC 键连接的苯基丙烷单元组成。两个化学键的裂解是利用木质素生产化学品和燃料的主要催化途径。虽然 CO 键的裂解可将木质素转化为有价值的芳香族化合物和可再生碳源,但 CC 键的选择性解聚也是提高芳香族单体产量的重要方法。因此,在这篇综述中,我们总结了木质素和木质素模型化合物中 CC 键选择性裂解的最新研究趋势,重点关注各种催化体系,包括氢解、氧化、光催化和电催化。通过分析 CC 键断裂的现状,强调了与该过程相关的核心问题和挑战以及对未来研究的期望。