Fungal Biology and Biotechnology最新文献

筛选
英文 中文
Patent landscape analysis for materials based on fungal mycelium: a guidance report on how to interpret the current patent situation. 基于真菌菌丝体的材料专利状况分析:关于如何解读当前专利状况的指导报告。
Fungal Biology and Biotechnology Pub Date : 2024-08-10 DOI: 10.1186/s40694-024-00177-2
Vera Meyer, Sabine Mengel
{"title":"Patent landscape analysis for materials based on fungal mycelium: a guidance report on how to interpret the current patent situation.","authors":"Vera Meyer, Sabine Mengel","doi":"10.1186/s40694-024-00177-2","DOIUrl":"10.1186/s40694-024-00177-2","url":null,"abstract":"<p><strong>Background: </strong>Recent advancements in the collaboration between two scientific disciplines-fungal biotechnology and materials sciences-underscore the potential of fungal mycelium as renewable resource for sustainable biomaterials that can be harnessed in different industries. As fungal mycelium can be biotechnologically obtained from different filamentous fungi and is as a material very versatile, respective research and commercial application should be thriving. However, some granted patents in the field of fungal mycelium-based materials have caused uncertainty in the community as to which subject matter is patent-protected and for how long the protection is expected to last.</p><p><strong>Results: </strong>This opinion paper therefore maps the patent landscape of fungal mycelium-based materials with a specific focus on technical applications including building construction, insulation, packaging, and the like. We provide an overview of granted patents (73) and pending applications (34) related to granted patents, the dominant patent portfolios (five, with the number of patents and/or applications per owner between six and 44), the patent owners, and highlight the key claims formulated to protect the inventions. Additionally, we outline various options towards an increased activity in the field.</p><p><strong>Conclusion: </strong>Patent developments in the field leave the impression that fungal materials, despite their high potential as renewable and biodegradable materials, have been held back due to patent over-protection. Considering the need for replacing current petroleum-based materials with renewable biomaterials, coordinated efforts may be called for to intensify efforts in the field.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NHEJ and HDR can occur simultaneously during gene integration into the genome of Aspergillus niger. 在黑曲霉基因组整合过程中,NHEJ 和 HDR 可同时发生。
Fungal Biology and Biotechnology Pub Date : 2024-08-05 DOI: 10.1186/s40694-024-00180-7
Susanne Fritsche, Aline Reinfurt, Felix Fronek, Matthias G Steiger
{"title":"NHEJ and HDR can occur simultaneously during gene integration into the genome of Aspergillus niger.","authors":"Susanne Fritsche, Aline Reinfurt, Felix Fronek, Matthias G Steiger","doi":"10.1186/s40694-024-00180-7","DOIUrl":"10.1186/s40694-024-00180-7","url":null,"abstract":"<p><p>Non-homologous end joining (NHEJ) and homology-directed repair (HDR) are two mechanisms in filamentous fungi to repair DNA damages. NHEJ is the dominant response pathway to rapidly join DNA double-strand breaks, but often leads to insertions or deletions. On the other hand, HDR is more precise and utilizes a homologous DNA template to restore the damaged sequence. Both types are exploited in genetic engineering approaches ranging from knock-out mutations to precise sequence modifications.In this study, we evaluated the efficiency of an HDR based gene integration system designed for the pyrG locus of Aspergillus niger. While gene integration was achieved at a rate of 91.4%, we also discovered a mixed-type repair (MTR) mechanism with simultaneous repair of a Cas9-mediated double-strand break by both NHEJ and HDR. In 20.3% of the analyzed transformants the donor DNA was integrated by NHEJ at the 3' end and by HDR at the 5' end of the double-strand break. Furthermore, sequencing of the locus revealed different DNA repair mechanisms at the site of the NHEJ event.Together, the results support the applicability of the genome integration system and a novel DNA repair type with implication on the diversity of genetic modifications in filamentous fungi.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dry gel spinning of fungal hydrogels for the development of renewable yarns from food waste. 利用真菌水凝胶的干凝胶纺丝技术,从食物垃圾中开发可再生纱线。
Fungal Biology and Biotechnology Pub Date : 2024-08-02 DOI: 10.1186/s40694-024-00178-1
Alice Lindh, E R Kanishka B Wijayarathna, Göksu Cinar Ciftci, Samira Syed, Tariq Bashir, Nawar Kadi, Akram Zamani
{"title":"Dry gel spinning of fungal hydrogels for the development of renewable yarns from food waste.","authors":"Alice Lindh, E R Kanishka B Wijayarathna, Göksu Cinar Ciftci, Samira Syed, Tariq Bashir, Nawar Kadi, Akram Zamani","doi":"10.1186/s40694-024-00178-1","DOIUrl":"10.1186/s40694-024-00178-1","url":null,"abstract":"<p><strong>Background: </strong>Renewable materials made using environmentally friendly processes are in high demand as a solution to reduce the pollution created by the fashion industry. In recent years, there has been a growing trend in research on renewable materials focused on bio-based materials derived from fungi.</p><p><strong>Results: </strong>Recently, fungal cell wall material of a chitosan producing fungus has been wet spun to monofilaments. This paper presents a modification for the fungal monofilament spinning process, by the development of a benign method, dry gel spinning, to produce continuous monofilaments and twisted multifilament yarns, from fungal cell wall, that can be used in textile applications. The fungal biomass of Rhizopus delemar, grown using bread waste as a substrate, was subjected to alkali treatment with a dilute sodium hydroxide solution to isolate alkali-insoluble material (AIM), which mainly consists of the fungal cell wall. The treatment of AIM with dilute lactic acid resulted in hydrogel formation. The morphology of the hydrogels was pH dependent, and they exhibited shear thinning viscoelastic behavior. Dry gel spinning of the fungal hydrogels was first conducted using a simple lab-scale syringe pump to inject the hydrogels through a needle to form a monofilament, which was directly placed on a rotating receiver and left to dry at room temperature. The resulting monofilament was used to make twisted multifilament yarns. The process was then improved by incorporating a heated chamber for the quicker drying of the monofilaments (at 30⁰C). Finally, the spinning process was scaled up using a twin-screw microcompounder instead of the syringe pump. The monofilaments were several meters long and reached a tensile strength of 63 MPa with a % elongation at break of 14. When spinning was performed in the heated chamber, the tensile strength increased to 80 MPa and further increased to 103 MPa when a micro-compounder was used for spinning.</p><p><strong>Conclusion: </strong>The developed dry gel spinning method shows promising results in scalability and demonstrates the potential for renewable material production using fungi. This novel approach produces materials with mechanical properties comparable to those of conventional textile fibers.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing the efficiency of CRISPR/Cas9-mediated genome editing in the citrus postharvest pathogen Penicillium digitatum. 提高 CRISPR/Cas9 介导的柑橘采后病原体数字青霉基因组编辑的效率。
Fungal Biology and Biotechnology Pub Date : 2024-07-13 DOI: 10.1186/s40694-024-00179-0
Carolina Ropero-Pérez, Jose F Marcos, Paloma Manzanares, Sandra Garrigues
{"title":"Increasing the efficiency of CRISPR/Cas9-mediated genome editing in the citrus postharvest pathogen Penicillium digitatum.","authors":"Carolina Ropero-Pérez, Jose F Marcos, Paloma Manzanares, Sandra Garrigues","doi":"10.1186/s40694-024-00179-0","DOIUrl":"10.1186/s40694-024-00179-0","url":null,"abstract":"<p><strong>Background: </strong>Penicillium digitatum is a fungal plant pathogen that causes the green mold disease in harvested citrus fruits. Due to its economical relevance, many efforts have focused on the development of genetic engineering tools for this fungus. Adaptation of the CRISPR/Cas9 technology was previously accomplished with self-replicative AMA1-based plasmids for marker-free gene editing, but the resulting efficiency (10%) limited its practical implementation. In this study, we aimed to enhance the efficiency of the CRISPR/Cas9-mediated gene editing in P. digitatum to facilitate its practical use.</p><p><strong>Results: </strong>Increasing the culture time by performing additional culture streaks under selection conditions in a medium that promotes slower growth rates significantly improved the gene editing efficiency in P. digitatum up to 54-83%. To prove this, we disrupted five candidate genes that were chosen based on our previous high-throughput gene expression studies aimed at elucidating the transcriptomic response of P. digitatum to the antifungal protein PdAfpB. Two of these genes lead to visual phenotypic changes (PDIG_53730/pksP, and PDIG_54100/arp2) and allowed to start the protocol optimization. The other three candidates (PDIG_56860, PDIG_33760/rodA and PDIG_68680/dfg5) had no visually associated phenotype and were targeted to confirm the high efficiency of the protocol.</p><p><strong>Conclusion: </strong>Genome editing efficiency of P. digitatum was significantly increased from 10% to up to 83% through the modification of the selection methodology, which demonstrates the feasibility of the CRISPR/Cas9 system for gene disruption in this phytopathogenic fungus. Moreover, the approach described in this study might help increase CRISPR/Cas9 gene editing efficiencies in other economically relevant fungal species for which editing efficiency via CRISPR/Cas9 is still low.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus. 关于药用蘑菇台湾樟芝、猪蹄菇和林芝的栽培、生物活性化合物、健康促进因素和临床试验的综述。
Fungal Biology and Biotechnology Pub Date : 2024-07-10 DOI: 10.1186/s40694-024-00176-3
Phoebe Yon Ern Tee, Thiiben Krishnan, Xin Tian Cheong, Snechaa A P Maniam, Chung Yeng Looi, Yin Yin Ooi, Caroline Lin Lin Chua, Shin-Yee Fung, Adeline Yoke Yin Chia
{"title":"A review on the cultivation, bioactive compounds, health-promoting factors and clinical trials of medicinal mushrooms Taiwanofungus camphoratus, Inonotus obliquus and Tropicoporus linteus.","authors":"Phoebe Yon Ern Tee, Thiiben Krishnan, Xin Tian Cheong, Snechaa A P Maniam, Chung Yeng Looi, Yin Yin Ooi, Caroline Lin Lin Chua, Shin-Yee Fung, Adeline Yoke Yin Chia","doi":"10.1186/s40694-024-00176-3","DOIUrl":"10.1186/s40694-024-00176-3","url":null,"abstract":"<p><p>Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238383/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic deletions in Aureobasidium pullulans by an AMA1 plasmid for gRNA and CRISPR/Cas9 expression. 利用 AMA1 质粒在 Aureobasidium pullulans 中进行基因组缺失,以实现 gRNA 和 CRISPR/Cas9 表达。
Fungal Biology and Biotechnology Pub Date : 2024-06-01 DOI: 10.1186/s40694-024-00175-4
Audrey Masi, Klara Wögerbauer, Robert L Mach, Astrid R Mach-Aigner
{"title":"Genomic deletions in Aureobasidium pullulans by an AMA1 plasmid for gRNA and CRISPR/Cas9 expression.","authors":"Audrey Masi, Klara Wögerbauer, Robert L Mach, Astrid R Mach-Aigner","doi":"10.1186/s40694-024-00175-4","DOIUrl":"10.1186/s40694-024-00175-4","url":null,"abstract":"<p><strong>Background: </strong>Aureobasidium pullulans is a generalist polyextremotolerant black yeast fungus. It tolerates temperatures below 0 °C or salt concentrations up to 18%, among other stresses. A. pullulans genome sequencing revealed a high potential for producing bioactive metabolites. Only few molecular tools exist to edit the genome of A. pullulans, hence it is important to make full use of its potential. Two CRISPR/Cas9 methods have been proposed for the protoplast-based transformation of A. pullulans. These methods require the integration of a marker gene into the locus of the gene to be deleted, when the deletion of this gene does not yield a selectable phenotype. We present the adaptation of a plasmid-based CRISPR/Cas9 system developed in Aspergillus niger for A. pullulans to create deletion strains.</p><p><strong>Results: </strong>The A. niger CRISPR/Cas9 plasmid led to efficient genomic deletions in A. pullulans. In this study, strains with deletions ranging from 30 to 862 bp were obtained by using an AMA1 plasmid-based genome editing strategy.</p><p><strong>Conclusion: </strong>The CRISPR/Cas9 transformation system presented in this study provides new opportunities for strain engineering of A. pullulans. This system allows expression of Cas9 and antibiotic resistance while being easy to adapt. This strategy could open the path to intensive genomic engineering in A. pullulans.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved expression and purification protocol enables the structural characterization of Mnt1, an antifungal target from Candida albicans. 通过改进表达和纯化方案,实现了白念珠菌抗真菌靶标 Mnt1 的结构表征。
Fungal Biology and Biotechnology Pub Date : 2024-05-07 DOI: 10.1186/s40694-024-00174-5
Patrícia Alves Silva, Amanda Araújo Souza, Gideane Mendes de Oliveira, Marcelo Henrique Soller Ramada, Nahúm Valente Hernández, Héctor Manuel Mora-Montes, Renata Vieira Bueno, Diogo Martins-de-Sa, Sonia Maria de Freitas, Maria Sueli Soares Felipe, João Alexandre Ribeiro Gonçalves Barbosa
{"title":"An improved expression and purification protocol enables the structural characterization of Mnt1, an antifungal target from Candida albicans.","authors":"Patrícia Alves Silva, Amanda Araújo Souza, Gideane Mendes de Oliveira, Marcelo Henrique Soller Ramada, Nahúm Valente Hernández, Héctor Manuel Mora-Montes, Renata Vieira Bueno, Diogo Martins-de-Sa, Sonia Maria de Freitas, Maria Sueli Soares Felipe, João Alexandre Ribeiro Gonçalves Barbosa","doi":"10.1186/s40694-024-00174-5","DOIUrl":"10.1186/s40694-024-00174-5","url":null,"abstract":"<p><strong>Background: </strong>Candida albicans is one of the most prevalent fungi causing infections in the world. Mnt1 is a mannosyltransferase that participates in both the cell wall biogenesis and biofilm growth of C. albicans. While the cell wall performs crucial functions in pathogenesis, biofilm growth is correlated with sequestration of drugs by the extracellular matrix. Therefore, antifungals targeting CaMnt1 can compromise fungal development and potentially also render Candida susceptible to drug therapy. Despite its importance, CaMnt1 has not yet been purified to high standards and its biophysical properties are lacking.</p><p><strong>Results: </strong>We describe a new protocol to obtain high yield of recombinant CaMnt1 in Komagataella phaffii using methanol induction. The purified protein's identity was confirmed by MALDI-TOF/TOF mass spectroscopy. The Far-UV circular dichroism (CD) spectra demonstrate that the secondary structure of CaMnt1 is compatible with a protein formed by α-helices and β-sheets at pH 7.0. The fluorescence spectroscopy results show that the tertiary structure of CaMnt1 is pH-dependent, with a greater intensity of fluorescence emission at pH 7.0. Using our molecular modeling protocol, we depict for the first time the ternary complex of CaMnt1 bound to its two substrates, which has enabled the identification of residues involved in substrate specificity and catalytic reaction. Our results corroborate the hypothesis that Tyr209 stabilizes the formation of an oxocarbenium ion-like intermediate during nucleophilic attack of the acceptor sugar, opposing the double displacement mechanism proposed by other reports.</p><p><strong>Conclusions: </strong>The methodology presented here can substantially improve the yield of recombinant CaMnt1 expressed in flask-grown yeasts. In addition, the structural characterization of the fungal mannosyltransferase presents novelties that can be exploited for new antifungal drug's development.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic regulation of L-tryptophan metabolism in Psilocybe mexicana supports psilocybin biosynthesis. 墨西哥茜草菌 L-色氨酸代谢的遗传调控支持茜草素的生物合成。
Fungal Biology and Biotechnology Pub Date : 2024-04-25 DOI: 10.1186/s40694-024-00173-6
P. Seibold, Sebastian Dörner, Janis Fricke, T. Schäfer, Christine Beemelmanns, Dirk Hoffmeister
{"title":"Genetic regulation of L-tryptophan metabolism in Psilocybe mexicana supports psilocybin biosynthesis.","authors":"P. Seibold, Sebastian Dörner, Janis Fricke, T. Schäfer, Christine Beemelmanns, Dirk Hoffmeister","doi":"10.1186/s40694-024-00173-6","DOIUrl":"https://doi.org/10.1186/s40694-024-00173-6","url":null,"abstract":"","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"2 7","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140653709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breaking down barriers: comprehensive functional analysis of the Aspergillus niger chitin synthase repertoire. 打破障碍:黑曲霉几丁质合成酶复合物的综合功能分析。
Fungal Biology and Biotechnology Pub Date : 2024-03-11 DOI: 10.1186/s40694-024-00172-7
Lars Barthel, Timothy Cairns, Sven Duda, Henri Müller, Birgit Dobbert, Sascha Jung, Heiko Briesen, Vera Meyer
{"title":"Breaking down barriers: comprehensive functional analysis of the Aspergillus niger chitin synthase repertoire.","authors":"Lars Barthel, Timothy Cairns, Sven Duda, Henri Müller, Birgit Dobbert, Sascha Jung, Heiko Briesen, Vera Meyer","doi":"10.1186/s40694-024-00172-7","DOIUrl":"10.1186/s40694-024-00172-7","url":null,"abstract":"<p><strong>Background: </strong>Members of the fungal kingdom are heterotrophic eukaryotes encased in a chitin containing cell wall. This polymer is vital for cell wall stiffness and, ultimately, cell shape. Most fungal genomes contain numerous putative chitin synthase encoding genes. However, systematic functional analysis of the full chitin synthase catalogue in a given species is rare. This greatly limits fundamental understanding and potential applications of manipulating chitin synthesis across the fungal kingdom.</p><p><strong>Results: </strong>In this study, we conducted in silico profiling and subsequently deleted all predicted chitin synthase encoding genes in the multipurpose cell factory Aspergillus niger. Phylogenetic analysis suggested nine chitin synthases evolved as three distinct groups. Transcript profiling and co-expression network construction revealed remarkably independent expression, strongly supporting specific role(s) for the respective chitin synthases. Deletion mutants confirmed all genes were dispensable for germination, yet impacted colony spore titres, chitin content at hyphal septa, and internal architecture of submerged fungal pellets. We were also able to assign specific roles to individual chitin synthases, including those impacting colony radial growth rates (ChsE, ChsF), lateral cell wall chitin content (CsmA), chemical genetic interactions with a secreted antifungal protein (CsmA, CsmB, ChsE, ChsF), resistance to therapeutics (ChsE), and those that modulated pellet diameter in liquid culture (ChsA, ChsB). From an applied perspective, we show chsF deletion increases total protein in culture supernatant over threefold compared to the control strain, indicating engineering filamentous fungal chitin content is a high priority yet underexplored strategy for strain optimization.</p><p><strong>Conclusion: </strong>This study has conducted extensive analysis for the full chitin synthase encoding gene repertoire of A. niger. For the first time we reveal both redundant and non-redundant functional roles of chitin synthases in this fungus. Our data shed light on the complex, multifaceted, and dynamic role of chitin in fungal growth, morphology, survival, and secretion, thus improving fundamental understanding and opening new avenues for biotechnological applications in fungi.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10926633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140102781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and functional characterisation of a locus for target site integration in Fusarium graminearum. 禾本科镰刀菌中靶位点整合基因座的鉴定和功能特性分析
Fungal Biology and Biotechnology Pub Date : 2024-02-26 DOI: 10.1186/s40694-024-00171-8
Martin Darino, Martin Urban, Navneet Kaur, Ana Machado Wood, Mike Grimwade-Mann, Dan Smith, Andrew Beacham, Kim Hammond-Kosack
{"title":"Identification and functional characterisation of a locus for target site integration in Fusarium graminearum.","authors":"Martin Darino, Martin Urban, Navneet Kaur, Ana Machado Wood, Mike Grimwade-Mann, Dan Smith, Andrew Beacham, Kim Hammond-Kosack","doi":"10.1186/s40694-024-00171-8","DOIUrl":"10.1186/s40694-024-00171-8","url":null,"abstract":"<p><strong>Background: </strong>Fusarium Head Blight (FHB) is a destructive floral disease of different cereal crops. The Ascomycete fungus Fusarium graminearum (Fg) is one of the main causal agents of FHB in wheat and barley. The role(s) in virulence of Fg genes include genetic studies that involve the transformation of the fungus with different expression cassettes. We have observed in several studies where Fg genes functions were characterised that integration of expression cassettes occurred randomly. Random insertion of a cassette may disrupt gene expression and/or protein functions and hence the overall conclusion of the study. Target site integration (TSI) is an approach that consists of identifying a chromosomal region where the cassette can be inserted. The identification of a suitable locus for TSI in Fg would avert the potential risks of ectopic integration.</p><p><strong>Results: </strong>Here, we identified a highly conserved intergenic region on chromosome 1 suitable for TSI. We named this intergenic region TSI locus 1. We developed an efficient cloning vector system based on the Golden Gate method to clone different expression cassettes for use in combination with TSI locus 1. We present evidence that integrations in the TSI locus 1 affects neither fungal virulence nor fungal growth under different stress conditions. Integrations at the TSI locus 1 resulted in the expression of different gene fusions. In addition, the activities of Fg native promoters were not altered by integration into the TSI locus 1. We have developed a bespoke bioinformatic pipeline to analyse the existence of ectopic integrations, cassette truncations and tandem insertions of the cassette that may occurred during the transformation process. Finally, we established a protocol to study protein secretion in wheat coleoptiles using confocal microscopy and the TSI locus 1.</p><p><strong>Conclusion: </strong>The TSI locus 1 can be used in Fg and potentially other cereal infecting Fusarium species for diverse studies including promoter activity analysis, protein secretion, protein localisation studies and gene complementation. The bespoke bioinformatic pipeline developed in this work together with PCR amplification of the insert could be an alternative to Southern blotting, the gold standard technique used to identify ectopic integrations, cassette truncations and tandem insertions in fungal transformation.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信