Fungal Biology and Biotechnology最新文献

筛选
英文 中文
Biosynthesis of the Paecilomyces marquandii conidial pigment saintopin. 马quandii拟青霉分生孢子色素saintopin的生物合成。
Fungal Biology and Biotechnology Pub Date : 2025-06-05 DOI: 10.1186/s40694-025-00199-4
Carsten Wieder, Sarah Galwas, Rainer Wiechert, Kevin Seipp, Alexander Yemelin, Eckhard Thines, Till Opatz, Anja Schüffler
{"title":"Biosynthesis of the Paecilomyces marquandii conidial pigment saintopin.","authors":"Carsten Wieder, Sarah Galwas, Rainer Wiechert, Kevin Seipp, Alexander Yemelin, Eckhard Thines, Till Opatz, Anja Schüffler","doi":"10.1186/s40694-025-00199-4","DOIUrl":"10.1186/s40694-025-00199-4","url":null,"abstract":"<p><p>Paecilomyces marquandii IBWF 003-21 produces vibrant purple pigmented conidia, the color of which can be attributed to the naphthacenedione natural product saintopin (1). The target compound was previously reported to exhibit potent topoisomerase-inhibitory activity, yet has not been extensively studied nor has the biosynthesis been elucidated. In an effort to elucidate the biosynthesis of 1, we mined the genome of Paecilomyces marquandii for non-reducing polyketide synthases (nrPKS), introduced them into the heterologous host Aspergillus oryzae OP12 and identified a prime candidate for the biosynthesis of 1 we termed stpA. Deletion of stpA in the native producer P. marquandii abolished production of 1, rendering conidia hyaline in color. stpA phylogenetically clusters with clade V nrPKS, canonically requiring trans-acting metallo-β-lactamase-like thioesterases (MβL) for product offloading, however, no MβL is encoded in the vicinity of stpA. Instead, a BLAST-search revealed a single MβL, stpB, encoded elsewhere in the P. marquandii genome, accompanied by a flavin-dependent monooxygenase (FMO), stpC, and an O-methyltransferase, stpD. Heterologous coexpression of stpA and stpC sufficed for reconstituting 1 biosynthesis in A. oryzae OP12 even without additional coexpression of stpB. Coexpression of stpC alongside the decaketide-synthase adaA involved in TAN-1612 biosynthesis also resulted in the production of 1, which implies that the formation of 1 proceeds via a decaketide precursor that is subsequently shortened. While the structure and biosynthesis of 1 are unique compared to other fungal naphthacenediones, further research is necessary to elucidate the elusive mechanism underlying the formation of 1.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"12 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144235942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization of bourbon stillage through production of tunable pure mycelium materials. 通过生产可调的纯菌丝体材料来实现波旁威士忌的增值。
Fungal Biology and Biotechnology Pub Date : 2025-06-04 DOI: 10.1186/s40694-025-00202-y
Keya Rani Roy, Zachary Byrd, Michael P Sama, Tyler J Barzee
{"title":"Valorization of bourbon stillage through production of tunable pure mycelium materials.","authors":"Keya Rani Roy, Zachary Byrd, Michael P Sama, Tyler J Barzee","doi":"10.1186/s40694-025-00202-y","DOIUrl":"10.1186/s40694-025-00202-y","url":null,"abstract":"<p><p>Stillage is a byproduct of distilleries which is rich in organic matter, minerals, and acidic components. It is commonly used as animal feed and has high potential for use as an alternative substrate for microorganisms. Filamentous fungi are saprophytes that can utilize stillage solids to grow as threadlike mycelium. The structure and composition of the filamentous mycelium has shown promise to produce pure mycelium materials (PMM), which might have potential to serve as leather-like or other novel materials with improved environmental impact profiles. Basidiomycota fungi (including true mushrooms) species are presently used in industry to produce PMM due to the ease of suppressing sporulation and encouraging vegetative growth. Other fungal phyla such as Mucoromycota offer benefits of faster growth, but suppression of sporulation is often more difficult. The production of PMM is a relatively new area and sufficient quantitative data is lacking on the effective cultivation and processing steps required to optimize the materials for different potential applications. In this study, a cultivation system capable of producing PMM with solid-state fermentation (SSF) of stillage substrate by Mucoromycota fungus Rhizopus microsporus var. oligosporus was designed and tested. The influence of important operational parameters on the aerial mycelium growth characteristics was studied including (1) substrate packing density, (2) external support geometry, (3) substrate carbon-to-nitrogen (C: N) ratio, and (4) aerial delivery of additives. The results showed that stillage was a favorable substrate to produce PMM and that the studied operational parameters allowed for effective control of the mycelium fiber length, density, and moisture content. R. oligosporus displayed rapid growth, enhanced 3 to 4 times compared to Basidiomycota fungus Pleurotus ostreatus (oyster mushroom). Increasing substrate packing density and the length of external supports was found to encourage development of longer aerial mycelium fibers while aerial delivery of additives was found to have limited effects on fiber length but significantly influenced mycelium density and moisture content. It was also found that the use of unprocessed stillage solids was effective at delaying the sporulation of this Mucoromycota fungus and promoting development of aerial mycelium, which was hypothesized to be related to its natively low C: N ratio. Together, these results indicate promise for the efficient production of tunable PMM from inexpensive organic substrates.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"12 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144227589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indigenizing fungal biotechnology for planetary health: an opinion paper. 为地球健康本土化真菌生物技术:一份意见文件。
Fungal Biology and Biotechnology Pub Date : 2025-06-02 DOI: 10.1186/s40694-025-00200-0
Rolando Perez, WarīNkwī Flores, Maria Astolfi, Ulises J Espinoza, Teal Brown Zimring, Keolu Fox
{"title":"Indigenizing fungal biotechnology for planetary health: an opinion paper.","authors":"Rolando Perez, WarīNkwī Flores, Maria Astolfi, Ulises J Espinoza, Teal Brown Zimring, Keolu Fox","doi":"10.1186/s40694-025-00200-0","DOIUrl":"10.1186/s40694-025-00200-0","url":null,"abstract":"<p><p>New fungal biotechnologies are advancing applied and conservation mycology to support global regenerative outcomes for natural and human systems. Here, we propose the Applied and Conservation Mycology Framework to align fungal biotechnology and Indigenous Knowledge Systems in support of planetary health, \"the health of human civilization and the state of the natural systems it depends on.\" The Kunming-Montreal Global Biodiversity Framework (KM-GBF) adopted at the 2022 United Nations Biodiversity Conference is humanity's best effort at reconciling the sustainable development of all societies and biodiversity loss while reaffirming the rights of Indigenous Peoples (IPs). Through Indigenous Data Sovereignty (IDSov) and Governance (IDGov), fungal biotechnologies could help address all 23 KM-GBF Targets. In this opinion paper, we apply Indigenous relational science and knowledge systems to explore how advancements in fungal biotechnology and digital technology enable Indigenous Peoples to develop, practice, and govern fungal biotechnologies for applied and conservation mycology. We focus on the Kara & Kichwa Nations, Indigenous Peoples of Ecuador, the Cultural Mountain of Andea, and the Cultural Rainforest of Amazonia. The ACMF centers on fungal biotechnological innovation by Indigenous Peoples and their participation in the global bioeconomy in the service of planetary health and all 23 KM-GBF Targets. We offer a starting point for envisioning future fungal technologies developed by Indigenous Peoples and in service of planetary health.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"12 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12128497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144210155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomining of lunar regolith simulant EAC-1 A with the fungus Penicillium simplicissimum. 用单纯青霉真菌对月球表层模拟物eac - 1a进行生物矿化。
Fungal Biology and Biotechnology Pub Date : 2025-05-19 DOI: 10.1186/s40694-025-00201-z
João Figueira, Stella Koch, Daniel W Müller, Sebastian Slawik, Aidan Cowley, Ralf Moeller, Marta Cortesão
{"title":"Biomining of lunar regolith simulant EAC-1 A with the fungus Penicillium simplicissimum.","authors":"João Figueira, Stella Koch, Daniel W Müller, Sebastian Slawik, Aidan Cowley, Ralf Moeller, Marta Cortesão","doi":"10.1186/s40694-025-00201-z","DOIUrl":"10.1186/s40694-025-00201-z","url":null,"abstract":"<p><strong>Background: </strong>On a future lunar habitat, acquiring needed resources in situ will inevitably come from the Lunar regolith. Biomining, i.e. the use of microorganisms to extract metals from the regolith, is sustainable and energy-efficient, making it highly promising for space exploration applications. Given the extensive use of filamentous fungi in industrial biotechnology, we investigated the ability of the fungus Penicillium simplicissimum to extract metals from the European Astronaut Centre lunar regolith simulant 1 (EAC-1 A), which will be used as the analogue soil at the European Lunar Exploration Laboratory (LUNA) facility at the European Space Agency (ESA) and German Aerospace Centre (DLR) site.</p><p><strong>Results: </strong>Biocompatibility tests demonstrated P. simplicissimum tolerance to high concentrations of EAC-1 A lunar regolith simulant (up to 60%), both on Earth gravity and Lunar simulated gravity via clinorotation. We reveal that a fungal bioleaching setup using low nutrient medium (20% PDB) enables P. simplicissimum to extract metals from EAC-1 A regolith over the course of 2 weeks at room temperature. Inductively coupled plasma mass spectrometry (ICP-MS) analysis of the leachate revealed the extraction of magnesium (up to 159 mg/L), calcium (151 mg/L), iron (68 mg/L), aluminium (32 mg/L), manganese (3 mg/L) as well as traces of titanium (0.02 mg/L). The recovered metal oxide powder from the leachate, obtained via centrifugation (14,500 g, 4,000 rpm), followed by filtration (0.22 μm) and drying at 60 °C overnight, achieved a promising average of 10 ± 3 g/L. Further analysis via SEM/EDS and XRD confirmed the presence of aluminium [as boehmite (AlO(OH))], magnesium, and iron [possibly as haematite (Fe<sub>2</sub>O<sub>3</sub>)] and magnetite [possibly as (Fe<sub>3</sub>O<sub>4</sub>)].</p><p><strong>Conclusion: </strong>Our study demonstrates successful fungal biomining of lunar regolith simulant EAC-1 A and emphasizes the utilization of fungal-based approaches as promising ISRU technologies in future space exploration missions.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"12 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144103140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradation of screenings from sewage treatment by white rot fungi. 白腐菌处理污水后滤网的生物降解研究。
Fungal Biology and Biotechnology Pub Date : 2025-05-14 DOI: 10.1186/s40694-025-00198-5
Anna Civzele, Alise Anna Stipniece-Jekimova, Linda Mezule
{"title":"Biodegradation of screenings from sewage treatment by white rot fungi.","authors":"Anna Civzele, Alise Anna Stipniece-Jekimova, Linda Mezule","doi":"10.1186/s40694-025-00198-5","DOIUrl":"10.1186/s40694-025-00198-5","url":null,"abstract":"<p><p>Wastewater treatment plants (WWTPs), particularly activated sludge systems, generate significant amounts of various types of waste, including screenings, primary sludge, and secondary sludge. While substantial research has been conducted on the recovery and valorization of sewage sludge, the treatment and utilization of screenings remain underexplored. In response, this study investigates the potential of white rot fungi to degrade cellulose-containing waste screened during the preliminary treatment and examines the production patterns of lignocellulolytic enzymes in the presence of this waste. The studied fungi exhibited variable enzymatic responses depending on the type of substrate, however, their adaptability highlighted the potential in fungal-mediated bioconversion processes. P. dryinus and T. versicolor were identified as strong and adaptive candidates for oxidative enzyme production, with P. dryinus showing laccase activity up to 1691.75 ± 12.22 U/mg and degrading 44.46% of carbohydrates in tested screenings. I. lacteus and B. adusta were predominantly observed in cellulolytic enzyme production, with B. adusta ensuring a 43.49% reduction in carbohydrate content of screenings. As a result of fungal cultivation in WWTP waste, the production potential of 34 to 46 kg of sugars per ton of screenings was determined. Therefore, the study presents a promising approach for the sustainable treatment of screenings and the development of waste management and resource recovery strategies for WWTP-derived waste.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"12 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144082013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioinformatic exploration of RiPP biosynthetic gene clusters in lichens. 地衣中RiPP生物合成基因簇的生物信息学研究。
Fungal Biology and Biotechnology Pub Date : 2025-05-02 DOI: 10.1186/s40694-025-00197-6
Anna Pasinato, Garima Singh
{"title":"Bioinformatic exploration of RiPP biosynthetic gene clusters in lichens.","authors":"Anna Pasinato, Garima Singh","doi":"10.1186/s40694-025-00197-6","DOIUrl":"https://doi.org/10.1186/s40694-025-00197-6","url":null,"abstract":"<p><strong>Background: </strong>Ribosomally synthesized and posttranslationally modified peptides (RiPPs) represent a relatively recent addition to the biosynthetic gene cluster (BGC) repertoire of fungi. These BGCs are primarily involved in toxins production and defense-related functions and resulting metabolites also have a significant therapeutic potential. While only a limited number of fungal RiPPs, primarily from a few model fungi, have been characterized, genome mining approaches show that RiPP BGCs are nearly ubiquitous across the fungal kingdom. However, the RiPP biosynthetic landscape of fungi involved in intricate relationship as symbiosis, such as lichen-forming fungi (LFF), remains unexplored.</p><p><strong>Results: </strong>This study presents the first comprehensive survey of RiPP BGCs across 111 LFF genomes employing an integrative framework that combines genome mining, phylogenetic inference, and gene network reconstruction. We identified 987 RiPP BGCs, constituting approximately 17% of the total biosynthetic diversity in LFF, a proportion significantly higher than previously estimated. Most lichen RiPP BGCs are unique and do not cluster with any known RiPP gene cluster. We found two RiPP BGCs that were shared among the members of the family Parmeliaceae (Lecanoromycetes), with the signature gene homologous to ustiloxin signature enzyme, indicating a putative similarity to fungal mycotoxin-related BGCs. While one of these BGCs, members of Clan R1, contains the accessory genes for dikaritin synthesis (tyrosinase and methyltransferase), the accessory genes of other BGCs, members of Clan R2, have not yet been reported from any characterized fungal RiPP BGC but only from bacteria. Additionally, for lichen RiPP BGCs that do not cluster with any known BGCs in the RiPP network, we unraveled the presence of the conserved HXXHC motif in the signature gene and, based on this we report the widespread distribution of putative dikaritin homologs across Lecanoromycetes.</p><p><strong>Conclusions: </strong>This study highlights the presence and distribution of RiPP BGCs in Lecanoromycetes and identifies two conserved RiPP clusters putatively homologous to dikaritins (involved in mycotoxin production) within the Lecanoromycete family Parmeliaceae and a general prevalence of putative signature dikaritin genes (not the cluster) in Lecanoromycetes. Our study highlights the widespread presence of putative mycotoxin-related BGCs in lichenized fungi.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"12 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048977/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144021381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A CRISPR Cas12a/Cpf1 strategy to facilitate robust multiplex gene editing in Aspergillus Niger. CRISPR Cas12a/Cpf1策略在黑曲霉中促进强大的多重基因编辑
Fungal Biology and Biotechnology Pub Date : 2025-04-25 DOI: 10.1186/s40694-025-00196-7
Abel Peter van Esch, Samuel Mathew Maurice Prudence, Fabiano Jares Contesini, Bernd Gerhartz, Kate Elizabeth Royle, Uffe Hasbro Mortensen
{"title":"A CRISPR Cas12a/Cpf1 strategy to facilitate robust multiplex gene editing in Aspergillus Niger.","authors":"Abel Peter van Esch, Samuel Mathew Maurice Prudence, Fabiano Jares Contesini, Bernd Gerhartz, Kate Elizabeth Royle, Uffe Hasbro Mortensen","doi":"10.1186/s40694-025-00196-7","DOIUrl":"https://doi.org/10.1186/s40694-025-00196-7","url":null,"abstract":"<p><strong>Background: </strong>CRISPR technologies have revolutionized strain engineering of Aspergillus species, and drastically increased the ease and speed at which genomic modifications can be performed. One of the advantages of CRISPR technologies is the possibility of rapid strain engineering using multiplex experiments. This can be achieved by using a set of different guiding RNA molecules (gRNA) to target multiple loci in the same experiment. Two major challenges in such experiments are firstly, the delivery of multiple guides simultaneously, and secondly, ensuring that each target locus is cut efficiently by the CRISPR nuclease. The CRISPR nuclease Cas12a, also known as Cpf1, presents a unique advantage to bypass this challenge. Specifically, and unlike Cas9, Cpf1 is able to release several gRNAs from a common precursor RNA molecule through its own RNase activity, eliminating the need for elements such as ribozymes or tRNA machinery for gRNA maturation. This feature sets the stage for much more straightforward construction of vectors for the delivery of many gRNAs, which in turn allows each locus to be targeted by multiple gRNAs to increase the odds of successfully inducing a break in the DNA.</p><p><strong>Results: </strong>Here we present a toolbox that can be used to assemble plasmids containing a gRNA multiplex expression cassette, which is able to express a multi gRNA precursor. The precursor can be processed via Cpf1 RNase activity to produce multiple functional gRNAs in vivo. Using our setup, we have constructed plasmids that are able to deliver up to ten gRNAs. In addition, we show that three simultaneous deletions can be introduced robustly in Aspergillus niger by targeting each gene with several gRNAs, without prior gRNA validation or the use of genomically integrated selection markers.</p><p><strong>Conclusion: </strong>In this study we have established an efficient system for the construction of CRISPR-Cpf1 vectors that are able to deliver a large number of gRNAs for multiplex genome editing in Aspergillus species. Our strategy allows multiple specific genomic modifications to be performed in a time frame of less than two weeks, and we envision this will be able to speed up cell factory construction efforts significantly.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"12 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12023492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144026323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influences of substrate and tissue type on erinacine production and biosynthetic gene expression in Hericium erinaceus. 底物和组织类型对猴头菌分泌和生物合成基因表达的影响。
Fungal Biology and Biotechnology Pub Date : 2025-04-03 DOI: 10.1186/s40694-025-00194-9
Elizabeth Doar, Kyle W Meyer, Zolton J Bair, Regan Nally, Steve McNalley, Renee Davis, Chase Beathard
{"title":"Influences of substrate and tissue type on erinacine production and biosynthetic gene expression in Hericium erinaceus.","authors":"Elizabeth Doar, Kyle W Meyer, Zolton J Bair, Regan Nally, Steve McNalley, Renee Davis, Chase Beathard","doi":"10.1186/s40694-025-00194-9","DOIUrl":"10.1186/s40694-025-00194-9","url":null,"abstract":"<p><strong>Background: </strong>Lion's mane (Hericium erinaceus) mycelium produces erinacines, a suite of cyathane diterpenoids with established neuroactivities. While H. erinaceus fruit body tissue has its own characteristic secondary metabolites, it generally does not produce detectable amounts of erinacines. Substrate composition influences the erinacine content of H. erinaceus mycelial cultures, similar to production of secondary metabolites in other fungi. This study explored the relationship between biosynthetic gene expression and erinacine content in H. erinaceus, comparing fruit body tissue to mycelial tissue cultured in two liquid media formulations.</p><p><strong>Results: </strong>In this study, we compared erinacine production in H. erinaceus fruit body to mycelial tissue cultivated in two liquid media formulations (Complex and Minimal) by quantifying mRNA transcript levels of the erinacine biosynthetic genes eriE, eriG, eriI, eriC, eriJ, eriB, and eriM (collectively, eri genes) alongside high performance liquid chromatography (HPLC) evaluation of erinacines Q, P, A, and C. We also predicted coding sequences for these seven eri genes. The Complex media preparation yielded mycelium with significantly higher erinacine C content, while the Minimal media yielded mycelium with greater erinacine Q content, suggesting an alteration of the biosynthetic pathway related to differences in substrate composition. Despite evident differences in erinacine concentrations, mycelial eri gene transcript levels did not differ significantly between the two liquid media preparations. When evaluated by gene expression or compound concentration, erinacine biosynthesis was substantially greater in mycelia compared to fruit body tissue in H. erinaceus.</p><p><strong>Conclusions: </strong>Alongside the absence of detectable erinacines within fruit body samples, eri gene transcripts were consistently downregulated in the fruit body compared to the mycelium, particularly at early stages of the biosynthetic pathway. Substrate composition is a critical factor in production of erinacines by H. erinaceus, and large differences in mycelial erinacine content can occur without significant differences in expression of eri genes. Our data support the hypothesis that production of fungal secondary metabolites can be influenced by tissue type and substrate components, and that the expression of eri genes is enriched in the mycelium when compared to the fruit body.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"12 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143781352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mutation of the LRG1 Rho-GAP gene is responsible for the hyper branching C-variant phenotype in the quorn mycoprotein fungus Fusarium venenatum A3/5. LRG1 Rho-GAP基因突变导致了quorn真菌镰刀菌A3/5的超分支c变异表型。
Fungal Biology and Biotechnology Pub Date : 2025-03-24 DOI: 10.1186/s40694-025-00195-8
John Connell, Helen J Bates, Ivey Geoghegan, Fiona Wilson, Richard J Harrison, R Jordan Price
{"title":"Mutation of the LRG1 Rho-GAP gene is responsible for the hyper branching C-variant phenotype in the quorn mycoprotein fungus Fusarium venenatum A3/5.","authors":"John Connell, Helen J Bates, Ivey Geoghegan, Fiona Wilson, Richard J Harrison, R Jordan Price","doi":"10.1186/s40694-025-00195-8","DOIUrl":"10.1186/s40694-025-00195-8","url":null,"abstract":"<p><strong>Background: </strong>Quorn mycoprotein, a protein-rich meat alternative, is produced through large-scale fermentation of the fungus Fusarium venenatum. However, a major challenge during F. venenatum fermentation is the consistent appearance of mutants called colonial variants (C-variants). These C-variants have a highly branched morphology, which ultimately lead to a less desirable final product and early termination of the fermentation process. This study aimed to identify the genetic mutations responsible for C-variant morphology.</p><p><strong>Results: </strong>We first isolated both C-variant and wild-type strains from commercial fermentation samples and characterised radial growth rates on solid media. Whole genome sequencing facilitated the identification of mutations in a gene called jg4843 in 11 out of 12 C-variant isolates, which were not observed in the wild-type isolates. The jg4843 gene was identified as the ortholog of LRG1, a Rho-GTPase activating protein that regulates the Rho1 signalling pathway affecting fungal growth. Notably, the mutations in jg4843 were primarily located in the RhoGAP domain responsible for LRG1 activity. To confirm the role of these mutations, we used CRISPR/Cas9-mediated homology-directed recombination to introduce the C-variant mutations into the wild-type isolate, which successfully recapitulated the characteristic C-variant morphology.</p><p><strong>Conclusions: </strong>This study identified mutations in the LRG1 ortholog jg4843 as the genetic cause of C-variant morphology in commercial fermentation F. venenatum isolates. Understanding this genetic basis paves the way for developing strategies to prevent C-variants arising, potentially leading to more efficient and sustainable production of Quorn mycoprotein.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"12 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143702174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptome response of the white-rot fungus Trametes versicolor to hybrid poplar exhibiting unique lignin chemistry. 白腐菌对杂交杨树表现出独特的木质素化学反应的转录组反应。
Fungal Biology and Biotechnology Pub Date : 2025-03-05 DOI: 10.1186/s40694-025-00193-w
Anbarah R Alzabaidi, Noor Alabbasi, Richard Meilan, Scott J Meiners, Thomas Canam
{"title":"Transcriptome response of the white-rot fungus Trametes versicolor to hybrid poplar exhibiting unique lignin chemistry.","authors":"Anbarah R Alzabaidi, Noor Alabbasi, Richard Meilan, Scott J Meiners, Thomas Canam","doi":"10.1186/s40694-025-00193-w","DOIUrl":"10.1186/s40694-025-00193-w","url":null,"abstract":"<p><strong>Background: </strong>Production of biofuels and bioproducts from lignocellulosic material is limited due to the complexity of the cell wall structure. This necessitates the use of physical, chemical, and/or physico-chemical pretreatment technologies, which adds significant capital, operational, and environmental costs. Biological pretreatment strategies have the potential to mitigate these expenses by harnessing the innate ability of specialized bacteria and fungi to deconstruct lignocellulose. White-rot fungi (e.g. Trametes versicolor) have been shown to be effective at biological pretreatment of lignocellulose, yet it was uncertain if these fungi are feedstock agnostic or are able to sense subtle changes in cell wall chemistry.</p><p><strong>Results: </strong>The present study examined the transcriptome response by Trametes versicolor to transgenic hybrid poplar (Populus tremula × alba) lines with altered syringyl (S) and guaiacyl (G) lignin. Specifically, the transcriptional response of the fungus to wild-type wood was compared to that from the wood of six transgenic lines within three lignin phenotypes, LSX (low S with hydroxy-G), LSHG (low S with high G), and HS (high S), with 350 transcripts showing significant differences among the samples. The transcriptome of T. versicolor varied according to the lignin phenotype of the wood, with the LSX wood resulting in the most substantial changes in T. versicolor transcript abundance. Specifically, the LSX wood led to 50 upregulated and 48 downregulated transcripts from WT at the twofold or greater threshold. For example, transcripts for the lignin peroxidases LiP3 and LiP10 were downregulated (approximately 12X and 31X lower, respectively) by the fungus on LSX wood compared to wild-type wood. LSX wood also resulted in approximately 11X lower transcript numbers of endo-β-1,4-glucanase yet led to an increase in expression of certain hemicellulases, further highlighting the altered deconstruction strategy by the fungus on this wood type.</p><p><strong>Conclusions: </strong>Overall, the results of this study demonstrated that T. versicolor was able to respond to transgenic poplar wood with the same genetic background, which has important implications for biological pretreatment strategies involving feedstocks that are genetically modified or have considerable natural variations in cell wall chemistry.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"12 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143568803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信