Journal of Statistical Distributions and Applications最新文献

筛选
英文 中文
The odd log-logistic logarithmic generated family of distributions with applications in different areas 奇对数-逻辑对数生成的分布族在不同领域的应用
Journal of Statistical Distributions and Applications Pub Date : 2017-07-04 DOI: 10.1186/s40488-017-0062-7
M. Alizadeh, S. M. T. K. MirMostafee, E. Ortega, T. Ramires, G. Cordeiro
{"title":"The odd log-logistic logarithmic generated family of distributions with applications in different areas","authors":"M. Alizadeh, S. M. T. K. MirMostafee, E. Ortega, T. Ramires, G. Cordeiro","doi":"10.1186/s40488-017-0062-7","DOIUrl":"https://doi.org/10.1186/s40488-017-0062-7","url":null,"abstract":"","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0062-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65887958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Density deconvolution for generalized skew-symmetric distributions 广义偏对称分布的密度反褶积
Journal of Statistical Distributions and Applications Pub Date : 2017-06-05 DOI: 10.1186/s40488-020-00103-y
Cornelis J. Potgieter
{"title":"Density deconvolution for generalized skew-symmetric distributions","authors":"Cornelis J. Potgieter","doi":"10.1186/s40488-020-00103-y","DOIUrl":"https://doi.org/10.1186/s40488-020-00103-y","url":null,"abstract":"","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-020-00103-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42249610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of polyhedral convex contoured distributions 多面体凸轮廓分布的模拟
Journal of Statistical Distributions and Applications Pub Date : 2017-03-21 DOI: 10.1186/s40488-017-0055-6
W. Richter, Kay Schicker
{"title":"Simulation of polyhedral convex contoured distributions","authors":"W. Richter, Kay Schicker","doi":"10.1186/s40488-017-0055-6","DOIUrl":"https://doi.org/10.1186/s40488-017-0055-6","url":null,"abstract":"","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0055-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65887463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent developments on the moment problem 力矩问题的最新进展
Journal of Statistical Distributions and Applications Pub Date : 2017-03-03 DOI: 10.1186/s40488-017-0059-2
G. D. Lin
{"title":"Recent developments on the moment problem","authors":"G. D. Lin","doi":"10.1186/s40488-017-0059-2","DOIUrl":"https://doi.org/10.1186/s40488-017-0059-2","url":null,"abstract":"","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"4 1","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2017-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0059-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65887546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 50
High quantile regression for extreme events. 极端事件的高分位数回归。
Journal of Statistical Distributions and Applications Pub Date : 2017-01-01 Epub Date: 2017-05-03 DOI: 10.1186/s40488-017-0058-3
Mei Ling Huang, Christine Nguyen
{"title":"High quantile regression for extreme events.","authors":"Mei Ling Huang,&nbsp;Christine Nguyen","doi":"10.1186/s40488-017-0058-3","DOIUrl":"https://doi.org/10.1186/s40488-017-0058-3","url":null,"abstract":"<p><p>For extreme events, estimation of high conditional quantiles for heavy tailed distributions is an important problem. Quantile regression is a useful method in this field with many applications. Quantile regression uses an <i>L</i> <sub>1</sub>-loss function, and an optimal solution by means of linear programming. In this paper, we propose a weighted quantile regression method. Monte Carlo simulations are performed to compare the proposed method with existing methods for estimating high conditional quantiles. We also investigate two real-world examples by using the proposed weighted method. The Monte Carlo simulation and two real-world examples show the proposed method is an improvement of the existing method.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"4 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0058-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37682930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Goodness of fit for the logistic regression model using relative belief. 使用相对信念的逻辑回归模型的拟合优度。
Journal of Statistical Distributions and Applications Pub Date : 2017-01-01 Epub Date: 2017-08-31 DOI: 10.1186/s40488-017-0070-7
Luai Al-Labadi, Zeynep Baskurt, Michael Evans
{"title":"Goodness of fit for the logistic regression model using relative belief.","authors":"Luai Al-Labadi, Zeynep Baskurt, Michael Evans","doi":"10.1186/s40488-017-0070-7","DOIUrl":"10.1186/s40488-017-0070-7","url":null,"abstract":"<p><p>A logistic regression model is a specialized model for product-binomial data. When a proper, noninformative prior is placed on the unrestricted model for the product-binomial model, the hypothesis <i>H</i> <sub>0</sub> of a logistic regression model holding can then be assessed by comparing the concentration of the posterior distribution about <i>H</i> <sub>0</sub> with the concentration of the prior about <i>H</i> <sub>0</sub>. This comparison is effected via a relative belief ratio, a measure of the evidence that <i>H</i> <sub>0</sub> is true, together with a measure of the strength of the evidence that <i>H</i> <sub>0</sub> is either true or false. This gives an effective goodness of fit test for logistic regression.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"4 1","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37603708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marginalized mixture models for count data from multiple source populations. 多源种群计数数据的边缘混合模型。
Journal of Statistical Distributions and Applications Pub Date : 2017-01-01 Epub Date: 2017-04-07 DOI: 10.1186/s40488-017-0057-4
Habtamu K Benecha, Brian Neelon, Kimon Divaris, John S Preisser
{"title":"Marginalized mixture models for count data from multiple source populations.","authors":"Habtamu K Benecha,&nbsp;Brian Neelon,&nbsp;Kimon Divaris,&nbsp;John S Preisser","doi":"10.1186/s40488-017-0057-4","DOIUrl":"https://doi.org/10.1186/s40488-017-0057-4","url":null,"abstract":"<p><p>Mixture distributions provide flexibility in modeling data collected from populations having unexplained heterogeneity. While interpretations of regression parameters from traditional finite mixture models are specific to unobserved subpopulations or latent classes, investigators are often interested in making inferences about the marginal mean of a count variable in the overall population. Recently, marginal mean regression modeling procedures for zero-inflated count outcomes have been introduced within the framework of maximum likelihood estimation of zero-inflated Poisson and negative binomial regression models. In this article, we propose marginalized mixture regression models based on two-component mixtures of non-degenerate count data distributions that provide directly interpretable estimates of exposure effects on the overall population mean of a count outcome. The models are examined using simulations and applied to two datasets, one from a double-blind dental caries incidence trial, and the other from a horticultural experiment. The finite sample performance of the proposed models are compared with each other and with marginalized zero-inflated count models, as well as ordinary Poisson and negative binomial regression.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"4 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0057-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34946340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Rank correlation under categorical confounding. 分类混杂下的等级相关。
Journal of Statistical Distributions and Applications Pub Date : 2017-01-01 Epub Date: 2017-09-15 DOI: 10.1186/s40488-017-0076-1
Jean-François Plante
{"title":"Rank correlation under categorical confounding.","authors":"Jean-François Plante","doi":"10.1186/s40488-017-0076-1","DOIUrl":"10.1186/s40488-017-0076-1","url":null,"abstract":"<p><p>Rank correlation is invariant to bijective marginal transformations, but it is not immune to confounding. Assuming a categorical confounding variable is observed, the author proposes weighted coefficients of correlation for continuous variables developed within a larger framework based on copulas. While the weighting is clear under the assumption that the dependence is the same within each group implied by the confounder, the author extends the Minimum Averaged Mean Squared Error (MAMSE) weights to borrow strength between groups when the dependence may vary across them. Asymptotic properties of the proposed coefficients are derived and simulations are used to assess their finite sample properties.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"4 1","pages":"20"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0076-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37602166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized log-logistic proportional hazard model with applications in survival analysis 广义对数-逻辑比例风险模型及其在生存分析中的应用
Journal of Statistical Distributions and Applications Pub Date : 2016-11-29 DOI: 10.1186/s40488-016-0054-z
Shahedul A. Khan, Saima K. Khosa
{"title":"Generalized log-logistic proportional hazard model with applications in survival analysis","authors":"Shahedul A. Khan, Saima K. Khosa","doi":"10.1186/s40488-016-0054-z","DOIUrl":"https://doi.org/10.1186/s40488-016-0054-z","url":null,"abstract":"","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-016-0054-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65887453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
Exponentiated Marshall-Olkin family of distributions 指数马歇尔-奥尔金分布族
Journal of Statistical Distributions and Applications Pub Date : 2016-11-05 DOI: 10.1186/s40488-016-0051-2
Cícero R. B. Dias, G. Cordeiro, M. Alizadeh, Pedro Rafael Diniz Marinho, Hemílio Fernandes Campos Coêlho
{"title":"Exponentiated Marshall-Olkin family of distributions","authors":"Cícero R. B. Dias, G. Cordeiro, M. Alizadeh, Pedro Rafael Diniz Marinho, Hemílio Fernandes Campos Coêlho","doi":"10.1186/s40488-016-0051-2","DOIUrl":"https://doi.org/10.1186/s40488-016-0051-2","url":null,"abstract":"","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-016-0051-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65887742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信