Marginalized mixture models for count data from multiple source populations.

Q2 Mathematics
Habtamu K Benecha, Brian Neelon, Kimon Divaris, John S Preisser
{"title":"Marginalized mixture models for count data from multiple source populations.","authors":"Habtamu K Benecha,&nbsp;Brian Neelon,&nbsp;Kimon Divaris,&nbsp;John S Preisser","doi":"10.1186/s40488-017-0057-4","DOIUrl":null,"url":null,"abstract":"<p><p>Mixture distributions provide flexibility in modeling data collected from populations having unexplained heterogeneity. While interpretations of regression parameters from traditional finite mixture models are specific to unobserved subpopulations or latent classes, investigators are often interested in making inferences about the marginal mean of a count variable in the overall population. Recently, marginal mean regression modeling procedures for zero-inflated count outcomes have been introduced within the framework of maximum likelihood estimation of zero-inflated Poisson and negative binomial regression models. In this article, we propose marginalized mixture regression models based on two-component mixtures of non-degenerate count data distributions that provide directly interpretable estimates of exposure effects on the overall population mean of a count outcome. The models are examined using simulations and applied to two datasets, one from a double-blind dental caries incidence trial, and the other from a horticultural experiment. The finite sample performance of the proposed models are compared with each other and with marginalized zero-inflated count models, as well as ordinary Poisson and negative binomial regression.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"4 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0057-4","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-017-0057-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/4/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Mixture distributions provide flexibility in modeling data collected from populations having unexplained heterogeneity. While interpretations of regression parameters from traditional finite mixture models are specific to unobserved subpopulations or latent classes, investigators are often interested in making inferences about the marginal mean of a count variable in the overall population. Recently, marginal mean regression modeling procedures for zero-inflated count outcomes have been introduced within the framework of maximum likelihood estimation of zero-inflated Poisson and negative binomial regression models. In this article, we propose marginalized mixture regression models based on two-component mixtures of non-degenerate count data distributions that provide directly interpretable estimates of exposure effects on the overall population mean of a count outcome. The models are examined using simulations and applied to two datasets, one from a double-blind dental caries incidence trial, and the other from a horticultural experiment. The finite sample performance of the proposed models are compared with each other and with marginalized zero-inflated count models, as well as ordinary Poisson and negative binomial regression.

Abstract Image

Abstract Image

多源种群计数数据的边缘混合模型。
混合分布为从具有无法解释的异质性的群体收集的数据建模提供了灵活性。虽然传统有限混合模型对回归参数的解释是针对未观察到的亚种群或潜在类的,但研究人员通常对推断总体种群中计数变量的边际平均值感兴趣。最近,在零膨胀泊松和负二项回归模型的极大似然估计框架内,介绍了零膨胀计数结果的边际均值回归建模方法。在本文中,我们提出了基于非退化计数数据分布的双组分混合的边缘混合回归模型,该模型提供了暴露对计数结果总体均值的直接可解释估计。这些模型通过模拟来检验,并应用于两个数据集,一个来自双盲龋齿发病率试验,另一个来自园艺试验。将所提模型的有限样本性能相互比较,并与边缘零膨胀计数模型以及普通泊松和负二项回归进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Distributions and Applications
Journal of Statistical Distributions and Applications Decision Sciences-Statistics, Probability and Uncertainty
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信