Goodness of fit for the logistic regression model using relative belief.

Q2 Mathematics
Luai Al-Labadi, Zeynep Baskurt, Michael Evans
{"title":"Goodness of fit for the logistic regression model using relative belief.","authors":"Luai Al-Labadi, Zeynep Baskurt, Michael Evans","doi":"10.1186/s40488-017-0070-7","DOIUrl":null,"url":null,"abstract":"<p><p>A logistic regression model is a specialized model for product-binomial data. When a proper, noninformative prior is placed on the unrestricted model for the product-binomial model, the hypothesis <i>H</i> <sub>0</sub> of a logistic regression model holding can then be assessed by comparing the concentration of the posterior distribution about <i>H</i> <sub>0</sub> with the concentration of the prior about <i>H</i> <sub>0</sub>. This comparison is effected via a relative belief ratio, a measure of the evidence that <i>H</i> <sub>0</sub> is true, together with a measure of the strength of the evidence that <i>H</i> <sub>0</sub> is either true or false. This gives an effective goodness of fit test for logistic regression.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"4 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961508/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-017-0070-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

A logistic regression model is a specialized model for product-binomial data. When a proper, noninformative prior is placed on the unrestricted model for the product-binomial model, the hypothesis H 0 of a logistic regression model holding can then be assessed by comparing the concentration of the posterior distribution about H 0 with the concentration of the prior about H 0. This comparison is effected via a relative belief ratio, a measure of the evidence that H 0 is true, together with a measure of the strength of the evidence that H 0 is either true or false. This gives an effective goodness of fit test for logistic regression.

使用相对信念的逻辑回归模型的拟合优度。
逻辑回归模型是积二叉数据的专门模型。如果在乘积-二叉模型的非限制模型上放置一个适当的、非信息先验,那么就可以通过比较关于 H 0 的后验分布浓度和关于 H 0 的先验浓度,来评估逻辑回归模型持有的假设 H 0。这为逻辑回归提供了有效的拟合优度检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Distributions and Applications
Journal of Statistical Distributions and Applications Decision Sciences-Statistics, Probability and Uncertainty
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信