{"title":"使用相对信念的逻辑回归模型的拟合优度。","authors":"Luai Al-Labadi, Zeynep Baskurt, Michael Evans","doi":"10.1186/s40488-017-0070-7","DOIUrl":null,"url":null,"abstract":"<p><p>A logistic regression model is a specialized model for product-binomial data. When a proper, noninformative prior is placed on the unrestricted model for the product-binomial model, the hypothesis <i>H</i> <sub>0</sub> of a logistic regression model holding can then be assessed by comparing the concentration of the posterior distribution about <i>H</i> <sub>0</sub> with the concentration of the prior about <i>H</i> <sub>0</sub>. This comparison is effected via a relative belief ratio, a measure of the evidence that <i>H</i> <sub>0</sub> is true, together with a measure of the strength of the evidence that <i>H</i> <sub>0</sub> is either true or false. This gives an effective goodness of fit test for logistic regression.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"4 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961508/pdf/","citationCount":"0","resultStr":"{\"title\":\"Goodness of fit for the logistic regression model using relative belief.\",\"authors\":\"Luai Al-Labadi, Zeynep Baskurt, Michael Evans\",\"doi\":\"10.1186/s40488-017-0070-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A logistic regression model is a specialized model for product-binomial data. When a proper, noninformative prior is placed on the unrestricted model for the product-binomial model, the hypothesis <i>H</i> <sub>0</sub> of a logistic regression model holding can then be assessed by comparing the concentration of the posterior distribution about <i>H</i> <sub>0</sub> with the concentration of the prior about <i>H</i> <sub>0</sub>. This comparison is effected via a relative belief ratio, a measure of the evidence that <i>H</i> <sub>0</sub> is true, together with a measure of the strength of the evidence that <i>H</i> <sub>0</sub> is either true or false. This gives an effective goodness of fit test for logistic regression.</p>\",\"PeriodicalId\":52216,\"journal\":{\"name\":\"Journal of Statistical Distributions and Applications\",\"volume\":\"4 1\",\"pages\":\"17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961508/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Distributions and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40488-017-0070-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-017-0070-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
逻辑回归模型是积二叉数据的专门模型。如果在乘积-二叉模型的非限制模型上放置一个适当的、非信息先验,那么就可以通过比较关于 H 0 的后验分布浓度和关于 H 0 的先验浓度,来评估逻辑回归模型持有的假设 H 0。这为逻辑回归提供了有效的拟合优度检验。
Goodness of fit for the logistic regression model using relative belief.
A logistic regression model is a specialized model for product-binomial data. When a proper, noninformative prior is placed on the unrestricted model for the product-binomial model, the hypothesis H0 of a logistic regression model holding can then be assessed by comparing the concentration of the posterior distribution about H0 with the concentration of the prior about H0. This comparison is effected via a relative belief ratio, a measure of the evidence that H0 is true, together with a measure of the strength of the evidence that H0 is either true or false. This gives an effective goodness of fit test for logistic regression.