极端事件的高分位数回归。

Q2 Mathematics
Mei Ling Huang, Christine Nguyen
{"title":"极端事件的高分位数回归。","authors":"Mei Ling Huang,&nbsp;Christine Nguyen","doi":"10.1186/s40488-017-0058-3","DOIUrl":null,"url":null,"abstract":"<p><p>For extreme events, estimation of high conditional quantiles for heavy tailed distributions is an important problem. Quantile regression is a useful method in this field with many applications. Quantile regression uses an <i>L</i> <sub>1</sub>-loss function, and an optimal solution by means of linear programming. In this paper, we propose a weighted quantile regression method. Monte Carlo simulations are performed to compare the proposed method with existing methods for estimating high conditional quantiles. We also investigate two real-world examples by using the proposed weighted method. The Monte Carlo simulation and two real-world examples show the proposed method is an improvement of the existing method.</p>","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":"4 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40488-017-0058-3","citationCount":"6","resultStr":"{\"title\":\"High quantile regression for extreme events.\",\"authors\":\"Mei Ling Huang,&nbsp;Christine Nguyen\",\"doi\":\"10.1186/s40488-017-0058-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For extreme events, estimation of high conditional quantiles for heavy tailed distributions is an important problem. Quantile regression is a useful method in this field with many applications. Quantile regression uses an <i>L</i> <sub>1</sub>-loss function, and an optimal solution by means of linear programming. In this paper, we propose a weighted quantile regression method. Monte Carlo simulations are performed to compare the proposed method with existing methods for estimating high conditional quantiles. We also investigate two real-world examples by using the proposed weighted method. The Monte Carlo simulation and two real-world examples show the proposed method is an improvement of the existing method.</p>\",\"PeriodicalId\":52216,\"journal\":{\"name\":\"Journal of Statistical Distributions and Applications\",\"volume\":\"4 1\",\"pages\":\"4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40488-017-0058-3\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Distributions and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40488-017-0058-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-017-0058-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

对于极端事件,重尾分布的高条件分位数估计是一个重要问题。分位数回归是该领域的一种有用的方法,具有广泛的应用。分位数回归使用了1-损失函数,并通过线性规划得到了最优解。本文提出了一种加权分位数回归方法。通过蒙特卡罗模拟,将所提出的方法与现有的估计高条件分位数的方法进行了比较。我们还使用所提出的加权方法研究了两个现实世界的例子。蒙特卡罗仿真和两个实际算例表明,所提方法是对现有方法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High quantile regression for extreme events.

High quantile regression for extreme events.

High quantile regression for extreme events.

High quantile regression for extreme events.

For extreme events, estimation of high conditional quantiles for heavy tailed distributions is an important problem. Quantile regression is a useful method in this field with many applications. Quantile regression uses an L 1-loss function, and an optimal solution by means of linear programming. In this paper, we propose a weighted quantile regression method. Monte Carlo simulations are performed to compare the proposed method with existing methods for estimating high conditional quantiles. We also investigate two real-world examples by using the proposed weighted method. The Monte Carlo simulation and two real-world examples show the proposed method is an improvement of the existing method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Distributions and Applications
Journal of Statistical Distributions and Applications Decision Sciences-Statistics, Probability and Uncertainty
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信