Water Research XPub Date : 2024-11-12DOI: 10.1016/j.wroa.2024.100278
Jingyu Ge , Jiuling Li , Ruihong Qiu , Tao Shi , Zi Huang , Yanchen Liu , Zhiguo Yuan
{"title":"Identifying periods impacted by sewer inflow and infiltration using time series anomaly detection","authors":"Jingyu Ge , Jiuling Li , Ruihong Qiu , Tao Shi , Zi Huang , Yanchen Liu , Zhiguo Yuan","doi":"10.1016/j.wroa.2024.100278","DOIUrl":"10.1016/j.wroa.2024.100278","url":null,"abstract":"<div><div>Accurate diagnosis of sewer inflow and infiltration (I/I) is crucial for ensuring the safe transportation of sewage and the stability of wastewater treatment processes. Identifying periods impacted by I/I is essential for I/I diagnosis, but current methods lack a standard criterion and require adaptation to specific conditions, resulting in low accuracy, complexity, and limited generalizability. This paper proposes a novel approach to distinguish I/I periods from time series of sewer measurements based on anomaly detection theory through an iterative use of a time-series reconstruction model. This method eliminates the need for external data such as rainfalls and avoids intensive manual data analysis. Operating directly on in-sewer data, it enhances accuracy compared to existing approaches and is applicable to various external factors such as rainfall, snowmelt, and seawater intrusion. The method can be applicable to a broad range of monitoring data, including flow rate, temperature, and conductivity. Validated through simulation studies and demonstrated via real-life applications, this method offers an efficient solution for I/I detection, facilitating further I/I diagnosis, including I/I quantification and location identification.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"25 ","pages":"Article 100278"},"PeriodicalIF":7.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water Research XPub Date : 2024-11-10DOI: 10.1016/j.wroa.2024.100276
Gang Fang , Daoping Huang , Zhiying Wu , Yan Chen , Yan Li , Yiqi Liu
{"title":"Effluent quality soft sensor for wastewater treatment plant with ensemble sparse learning-based online next generation reservoir computing","authors":"Gang Fang , Daoping Huang , Zhiying Wu , Yan Chen , Yan Li , Yiqi Liu","doi":"10.1016/j.wroa.2024.100276","DOIUrl":"10.1016/j.wroa.2024.100276","url":null,"abstract":"<div><div>Real-time monitoring of key quality variables is essential and crucial for stable and safe operations of wastewater treatment plants (WWTPs). Next generation reservoir computing (NG-RC) has recently garnered significant attention in quality prediction, such as COD and BOD, as an effective alternative to traditional reservoir computing (RC), then is able to act as a data-driven soft sensor to twin a hardware sensor for quality variable measurements. Unlike RC, NG-RC does not require random sampling matrices to define the weights of recurrent neural networks and has fewer hyperparameters. However, NG-RC is usually used online but trained offline, thus leading to model degradation under dynamic scenarios. This paper proposes a sparse online NG-RC approach to meet the real-time requirements of WWTPs and mitigate the impact of measurement noise on the model. First, inspired by the Woodbury matrix identity, an incremental strategy is designed, using sequentially arriving data blocks to learn the output weights of NG-RC online. Then, an ensemble sparse strategy is combined to alleviate overfitting issues of the prediction model. Moreover, a soft sensor based on the ensemble sparse online NG-RC is developed to perform real-time prediction of quality indicators in wastewater treatment processes. Finally, two datasets from actual WWTPs are used to validate the effectiveness of the proposed model.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"25 ","pages":"Article 100276"},"PeriodicalIF":7.2,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water Research XPub Date : 2024-11-08DOI: 10.1016/j.wroa.2024.100274
Xiao Zhou , Yacan Man , Shuming Liu , Juan Zhang , Rui Yuan , Wei Wang , Kuizu Su
{"title":"Leveraging multi-level correlations for imputing monitoring data in water supply systems using graph signal sampling theory","authors":"Xiao Zhou , Yacan Man , Shuming Liu , Juan Zhang , Rui Yuan , Wei Wang , Kuizu Su","doi":"10.1016/j.wroa.2024.100274","DOIUrl":"10.1016/j.wroa.2024.100274","url":null,"abstract":"<div><div>Data missing and anomalies in monitoring equipment have become critical barriers to developing intelligent Water Supply Systems (WSS). The valid data preceding and after the missing segments can be utilized to impute missing values. However, traditional imputation methods, such as linear interpolation and prediction-based methods, have limited capacity to use data relationships or can only utilize information before the missing values. Therefore, existing methods still need to work on efficiently and conveniently achieving high-accuracy imputation. According to the continuity and periodicity of WSS data, missing values often exhibit multi-level correlations with valid data. This paper innovatively employs graph structures to analyze the multi-level correlations at different timestamps and applies graph signal sampling algorithms to extract low-frequency features for imputation. A novel Graph-based Data Imputation (GDI) method has been developed, which leverages multi-level correlations to propagate information and completes imputation tasks without requiring complex feature engineering and pre-training processes. Results indicate that GDI outperforms Holt-Winters, Support Vector Regression, and Gated Recurrent Unit in the task of imputing continuous missing data. It can still achieve <span><math><mrow><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup><mo>></mo><mn>0.8</mn></mrow></math></span> even when the proportion of missing values reaches 80 %. These results demonstrate that GDI ensures a more streamlined and efficient imputation with high robustness and accuracy.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"25 ","pages":"Article 100274"},"PeriodicalIF":7.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water Research XPub Date : 2024-11-06DOI: 10.1016/j.wroa.2024.100277
Zhiqiang Zuo , Tianyi Zhang , Xin Huang , Xiaotong Cen , Xi Lu , Tao Liu , Ho Kyong Shon , Min Zheng
{"title":"A hybrid oxidation approach for converting high-strength urine ammonia into ammonium nitrate","authors":"Zhiqiang Zuo , Tianyi Zhang , Xin Huang , Xiaotong Cen , Xi Lu , Tao Liu , Ho Kyong Shon , Min Zheng","doi":"10.1016/j.wroa.2024.100277","DOIUrl":"10.1016/j.wroa.2024.100277","url":null,"abstract":"<div><div>Nutrient resources contained in human urine have great potential to alleviate global agricultural fertilizer demand. Microbial nitrification is a recognized strategy for stabilizing urine ammonia into ammonium nitrate, a common fertilizer worldwide, but faces a core bottleneck of process instability due to microbial inhibition. This study reports a new approach by developing a hybrid oxidation process involving three stages—microbial ammonia oxidation, chemical nitrite oxidation and microbial nitrite oxidation. <em>Candidatus</em> Nitrosoglobus, a <em>γ</em>-proteobacterial ammonia oxidizer highly tolerant to free nitrous acid, was introduced in the first stage to oxidize half of the total ammonia in the influent (8 g NH<sub>4</sub><sup>+</sup>-N/L) to nitrite. The nitrite was then chemically oxidized by using hydrogen peroxide via a rapid chemical reaction to form nitrate. The third stage, microbial nitrite oxidation, was employed to ensure the complete removal of residual nitrite following chemical oxidation. The overall concept demonstrated in this work showcased the robust performance of the hybrid system. Moreover, the system also had a dual advantage in achieving antimicrobial ability in the first and second stages, making treated urine a safe fertilizer.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"25 ","pages":"Article 100277"},"PeriodicalIF":7.2,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water Research XPub Date : 2024-11-01DOI: 10.1016/j.wroa.2024.100275
Suwan Dai , Haixiao Guo , Yiming Li , Jiaqi Hou , Yufen Wang , Tingting Zhu , Bing-Jie Ni , Yiwen Liu
{"title":"Application of organic silicon quaternary ammonium salt (QSA) to reduce carbon footprint of sewers: Long-term inhibition on sulfidogenesis and methanogenesis","authors":"Suwan Dai , Haixiao Guo , Yiming Li , Jiaqi Hou , Yufen Wang , Tingting Zhu , Bing-Jie Ni , Yiwen Liu","doi":"10.1016/j.wroa.2024.100275","DOIUrl":"10.1016/j.wroa.2024.100275","url":null,"abstract":"<div><div>Sulfidogenic and methanogenic processes are undesirable in sewer management, yet the derived problems regarding organic losses are often neglected. Traditional chemical dosing methods aimed at sulfide and methane control commonly involve similar mechanisms of oxidation and/or precipitation. Moreover, previous focuses were centered on elevating control efficacy rather than investigating interactions between dosed chemicals and biofilms. In this work, organic silicon quaternary ammonium salt (QSA) of 75 mg-N/L was firstly applied in laboratory pressurized sewer reactors. After three dosing events, it took 20 days for sulfidogenic activities to recover to 50 % without further elevations. Meantime, methanogenic activities were stable ca. 11 % without significant inclinations to recover. Notably, consumption rate of chemical oxygen demand (COD) was suppressed to 50 % at most, and no microbial resistance to QSA but better control efficacy was observed. Characterizations of physicochemistry, microbial community and metabolism were conducted to elucidate mechanisms. Results showed that QSA was attached on sewer biofilms via electrostatic attraction to exert enduring control efficacy. Biofilms tended to become more hydrophobic and compact after QSA exposure. Microbial analyses indicated that relative abundances of microbes regarding hydrolysis, acidogenesis and methanogenesis were sharply decreased together with down-regulation of pivotal enzymatic activities. Additionally, denitrification batch tests initially suggested that the biodegradability of effluent was significantly enhanced, which ensured the safety of QSA dosing into sewers. Overall, results of this work were expected to lay a theoretical foundation on employing QSA to wastewater management.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"25 ","pages":"Article 100275"},"PeriodicalIF":7.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water Research XPub Date : 2024-10-30DOI: 10.1016/j.wroa.2024.100271
Kyle D. Rauch , Sean A. MacIsaac , Bailey Reid , Toni J. Mullin , Ariel J Atkinson , Anthony L Pimentel , Amina K. Stoddart , Karl G. Linden , Graham A. Gagnon
{"title":"A critical review of ultra-violet light emitting diodes as a one water disinfection technology","authors":"Kyle D. Rauch , Sean A. MacIsaac , Bailey Reid , Toni J. Mullin , Ariel J Atkinson , Anthony L Pimentel , Amina K. Stoddart , Karl G. Linden , Graham A. Gagnon","doi":"10.1016/j.wroa.2024.100271","DOIUrl":"10.1016/j.wroa.2024.100271","url":null,"abstract":"<div><div>UV light emitting diode (LED) disinfection technologies have advanced over the last decade and expanded the design space for applications in point of use, industrial, and now full-scale water treatment. This literature review examines the progression of UV LED technologies from 2007 to 2023 using key features such as total optical power, price, and wall-plug efficiency. The review found that optical power is increasing while the price per Watt is decreasing; however, the wall plug energy (WPE) is slowly improving over the last decade. These factors govern the feasibility of many UV LEDs applications and establish the current state of the art for these technologies. An analysis of inactivation rate constants for low-pressure, medium-pressure, and UV LED sources was undertaken and provides a comprehensive view of how current UV LED technologies compare to traditional technologies. This comparison found that UV LEDs perform comparably vs conventional UV technologies when disinfecting bacteria and viruses. Furthermore, comparison of reported reduction equivalent fluences for UV LED flow-through reactors at the bench-, pilot-, and full-scale were explored in this review, and it was found that LED treatment is becoming more effective at handling increased flowrates and has been proven to work at full-scale. UV LEDs do however require additional research into the impacts of water matrices at different wavelengths and the impact that each available LED wavelength has on disinfection. Overall, this work provides a broad assessment of UV disinfection technologies and serves as a state-of-the-art reference document for those who are interested in understanding this rapidly developing technology.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"25 ","pages":"Article 100271"},"PeriodicalIF":7.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water Research XPub Date : 2024-10-30DOI: 10.1016/j.wroa.2024.100270
Dongdong Xu , Tao Liu , Chao Pan , Leiyan Guo , Jianhua Guo , Ping Zheng , Meng Zhang
{"title":"Novel ellipsoid-like granules exhibit enhanced anammox performance compared to sphere-like granules","authors":"Dongdong Xu , Tao Liu , Chao Pan , Leiyan Guo , Jianhua Guo , Ping Zheng , Meng Zhang","doi":"10.1016/j.wroa.2024.100270","DOIUrl":"10.1016/j.wroa.2024.100270","url":null,"abstract":"<div><div>Anammox granular sludge (AnGS) serves as an important platform for cost-effective nitrogen removal from wastewater. Different to the traditionally sphere-like granules, a novel type of AnGS in a unique ellipsoid-like shape was obtained through enhancing shear force. The ellipsoid-like AnGS significantly exhibited a smaller aspect ratio (-25.1 %) and granular size (-11.8 %), compared to traditional sphere-like AnGS (<em>p</em> < 0.01). Comprehensive comparisons showed that ellipsoid-like AnGS possessed a significantly higher extracellular polymeric substances (EPS) content and strength, as well as an enhanced mass transfer and a higher viable bacteria proportion due to the larger substrate permeable zone (<em>p</em> < 0.01). Additionally, the anammox bacterial abundance (<em>Candidatus</em> Kuenenia) was 12.2 % higher in ellipsoid-like AnGS than in sphere-like AnGS. All these characteristics of ellipsoid-like AnGS jointly increased the specific anammox activity by 29.0 % and nitrogen removal capacity by 22.6 %, compared to sphere-like AnGS. Further fluid field simulation suggested the enhanced flow shear on the side surface of AnGS likely drove the formation of ellipsoid-like AnGS. The higher shear force on the side surface led to an increase of EPS content (especially hydrophobic protein) and elastic modulus, thus constraining lateral expansion. This study sheds light on impacts of granular shape, an overlooked morphological factor, on anammox performance. The ellipsoid-like AnGS presented herein also offers a unique and promising aggregate to enhance anammox performance.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"25 ","pages":"Article 100270"},"PeriodicalIF":7.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water Research XPub Date : 2024-10-29DOI: 10.1016/j.wroa.2024.100272
Jinhui Wang , Lina Chi , Shuai Liu , Jiao Yin , Youlin Zhang , Jian Shen , Xinze Wang
{"title":"Overlooked role of long capping time and environmental factors in the plateau lake for impairing lanthanum-modified-bentonite's immobilization to phosphate","authors":"Jinhui Wang , Lina Chi , Shuai Liu , Jiao Yin , Youlin Zhang , Jian Shen , Xinze Wang","doi":"10.1016/j.wroa.2024.100272","DOIUrl":"10.1016/j.wroa.2024.100272","url":null,"abstract":"<div><div>Lanthanum-modified-bentonite(LMB) has been applied for eutrophication management as a phosphate(P)-binding agent in many lakes. However, re-eutrophication took place several years or decades later after the first practice of capping due to dynamic environmental factors in the plateau lake. Here, we investigated the effect of long-term capping and integrated environmental factors in the plateau lake including alkalinity, organic matter, disturbance and photodegradation to the LMB immobilization. Long-term LMB immobilization exhibited C accumulation(82.3%), La depletion(53.5%) and lager size effect in the sediment particle, indicating the breakage of La-O-P bonds and the formation of La-O-C bonds over immobilization time. Additionally, pH(8–10) in the plateau lake could enhance the P desorption and decrease P adsorption through electrostatic repulsion enhancement with the zeta potential reduction(7.2 mV). Further disturbance experiment indicated a significant releasing trend of active P and DGT-labile P from the solid phase, pore water to the overlying water after disturbances due to resuspended releasing, particle size and amorphous Fe, Mn and Al's redistribution. Moreover, <sup>31</sup>P NMR and EPR results indicated photodegradation after disturbance converted diester phosphate into orthophosphate with long-term LMB immobilization via the oxidation of ·OH in the sediment of the plateau lake. Therefore, management issues for Xingyun Lake may apply to other plateau lakes with low external P input, intermediate depth and intense disturbance.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"25 ","pages":"Article 100272"},"PeriodicalIF":7.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water Research XPub Date : 2024-10-29DOI: 10.1016/j.wroa.2024.100273
Jingya Xu , Yizhen Wang , Yanzhao Wang , Lai Peng , Yifeng Xu , Hailong Yin , Bin Dong , Xiaohu Dai , Jing Sun
{"title":"In-sewer iron dosing enhances bioenergy recovery in downstream sewage sludge anaerobic digestion: The impact of iron salt types and thermal hydrolysis pretreatment","authors":"Jingya Xu , Yizhen Wang , Yanzhao Wang , Lai Peng , Yifeng Xu , Hailong Yin , Bin Dong , Xiaohu Dai , Jing Sun","doi":"10.1016/j.wroa.2024.100273","DOIUrl":"10.1016/j.wroa.2024.100273","url":null,"abstract":"<div><div>Dosing iron salts is a widely adopted strategy for sewer odor and corrosion management, and it can affect bioenergy recovery during anaerobic digestion (AD) of sludge in downstream wastewater treatment plants. However, the different impacts of in-sewer iron salt dosing on AD, depending on the types of iron and digestion conditions, remain unclear. Therefore, this study investigated the impact of in-sewer ferrous (Fe(II)) and ferrate (Fe(VI)) dosing on bioenergy recovery in both conventional AD and AD with thermal hydrolysis pretreatment (THP). The results showed that in-sewer Fe(VI) dosing notably enhanced methane production in AD more than in-sewer Fe(II) dosing, with cumulative methane yields of 197.1±1.9 mLCH<sub>4</sub>∙gVSadded<sup>−1</sup> for Fe(VI) and 186.5±10.4 mLCH<sub>4</sub>∙gVSadded<sup>−1</sup> for Fe(II), respectively. Microbial analyses and iron particle characterizations suggested that the superior promotion with Fe(VI) dosing may be attributed to the smaller particle sizes and higher iron oxide content of Fe(VI) resultant products. This led to a greater enhancement in direct interspecies electron transfer (DIET) between syntrophic bacteria and methanogens, as indicated by the upregulation of <em>Methanosaeta</em> and key functional genes involved in CO<sub>2</sub>-utilizing methanogenesis. Additionally, in THP-AD, the methane production enhancement caused by in-sewer iron dosing (35.5 mLCH<sub>4</sub>∙gVSadded<sup>−1</sup>) exceeded that in conventional AD (26.9 mLCH<sub>4</sub>∙gVSadded<sup>−1</sup>), although organic degradation during THP was unaffected. As THP-AD gains popularity for improved bioenergy recovery from sludge, our findings suggest that in-sewer iron dosing supports this advancement. Furthermore, in-sewer Fe(VI) dosing appears more promising within integrated wastewater management strategies, facilitating energy- and carbon-neutralization of urban water systems.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"25 ","pages":"Article 100273"},"PeriodicalIF":7.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water Research XPub Date : 2024-10-24DOI: 10.1016/j.wroa.2024.100268
Ting Wei, Ting Ran, Weikang Rong, Yun Zhou
{"title":"Efficient and sustainable removal of linear alkylbenzene sulfonate in a membrane biofilm: Oxygen supply dosage impacts mineralization pathway","authors":"Ting Wei, Ting Ran, Weikang Rong, Yun Zhou","doi":"10.1016/j.wroa.2024.100268","DOIUrl":"10.1016/j.wroa.2024.100268","url":null,"abstract":"<div><div>Linear alkylbenzene sulfonate (LAS) can be thoroughly mineralized within sufficient oxygen (O<sub>2</sub>), but which is energy intensive and may causes serious foaming problem. Although cometabolism can achieve efficient LAS removal within a wide range of O<sub>2</sub> dosages, how O<sub>2</sub> dosage systematically affects LAS metabolic pathway is still unclear. Here, membrane aerated biofilm reactor (MABR) enabled accurate O<sub>2</sub> delivery and bulk dissolved oxygen (DO) control. MABR achieved efficient removal of LAS (>96.4 %), nitrate (>97.8 %) and total nitrogen (>96.2 %) at the three target DO conditions. At high DO condition (0.6 mg/L), LAS was efficiently removed by aerobic mineralization (predominant) coupled with aerobic denitrification biodegradation with the related functional enzymes. <em>Pseudomonas, Flavobacterium, Hydrogenophaga</em>, and <em>Pseudoxanthomonas</em> were dominant genus contributing to four possible LAS aerobic metabolic pathways. As O<sub>2</sub> dosage reduced to only 29.7 % of the demand for LAS mineralization, O<sub>2</sub> facilitated LAS activation, benzene-ring cleavage and a portion of respiration. NO<sub>3</sub><sup>-</sup>-N respiration-induced anaerobic denitrification also contributed to ring-opening and organics mineralization. <em>Desulfomicrobium</em> and <em>Desulfonema</em> related two possible anaerobic metabolic pathways also contributed to LAS removal. The findings provide a promising strategy for achieving low-cost high LAS-containing greywater treatment.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"25 ","pages":"Article 100268"},"PeriodicalIF":7.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}