Eye and Brain最新文献

筛选
英文 中文
Effects of tACS-Like Electrical Stimulation on Correlated Firing of Retinal Ganglion Cells: Part III. tacs样电刺激对视网膜神经节细胞相关放电的影响(三)。
IF 4.4
Eye and Brain Pub Date : 2022-01-12 eCollection Date: 2022-01-01 DOI: 10.2147/EB.S313161
Franklin R Amthor, Christianne E Strang
{"title":"Effects of tACS-Like Electrical Stimulation on Correlated Firing of Retinal Ganglion Cells: Part III.","authors":"Franklin R Amthor,&nbsp;Christianne E Strang","doi":"10.2147/EB.S313161","DOIUrl":"https://doi.org/10.2147/EB.S313161","url":null,"abstract":"<p><strong>Purpose: </strong>Transcranial alternating current stimulation (tACS) is a stimulation protocol used for learning enhancement and mitigation of cognitive dysfunction. Correlated firing has been postulated to be a meta-code that links neuronal spike responses associated with a single entity and may be an important component of high-level cognitive functions. Thus, changes in the covariance firing structure of CNS neurons such as retinal ganglion cells are one potential mechanism by which tACS can exert its effects.</p><p><strong>Materials and methods: </strong>We used microelectrode arrays to record light-evoked spike responses of 24 retinal ganglion cells in 7 rabbit eyecup preparations and analyzed the covariance between 30 pairs of neighboring retinal ganglion cells before, during, and after 10-minute application of alternating currents of 1 microampere at 10 or 20 Hz.</p><p><strong>Results: </strong>tACS stimulation significantly changed the covariance structure of correlated firing in 60% of simultaneously recorded retinal ganglion cells. Application of tACS in the retinal preparation increased cross-covariance in 26% of cell pairs, an effect usually associated with increased light-evoked ganglion cell firing. tACS associated decreases in cross-covariance occurred in 37% of cell pairs. Increased covariance was more common in response to the first, 10-minute application of tACS in isolated retina preparation. Changes in covariance were rare after repeated stimulation, and more likely to result in decreased covariance.</p><p><strong>Conclusion: </strong>Retinal ganglion cell correlated firing is modulated by 1 microampere tACS currents showing that electrical stimulation can significantly and persistently change the structure of the correlated firing of simultaneously recorded rabbit retinal ganglion cells.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":" ","pages":"1-15"},"PeriodicalIF":4.4,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7f/d2/eb-14-1.PMC8763268.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39947324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Neuroplasticity of the Lateral Geniculate Nucleus in Response to Retinal Gene Therapy in a Group of Patients with RPE65 Mutations. 一组RPE65突变患者视网膜基因治疗对外侧膝状核神经可塑性的影响。
IF 4.4
Eye and Brain Pub Date : 2022-01-01 DOI: 10.2147/EB.S377275
Manzar Ashtari, Mikhail Lipin, Michelle Duong, Gui-Shuang Ying, Yinxi Yu, Albert Maguire, Jean Bennett
{"title":"Neuroplasticity of the Lateral Geniculate Nucleus in Response to Retinal Gene Therapy in a Group of Patients with <i>RPE65</i> Mutations.","authors":"Manzar Ashtari,&nbsp;Mikhail Lipin,&nbsp;Michelle Duong,&nbsp;Gui-Shuang Ying,&nbsp;Yinxi Yu,&nbsp;Albert Maguire,&nbsp;Jean Bennett","doi":"10.2147/EB.S377275","DOIUrl":"https://doi.org/10.2147/EB.S377275","url":null,"abstract":"<p><strong>Introduction: </strong>Previous works on experience-dependent brain plasticity have been limited to the cortical structures, overlooking subcortical visual structures such as the lateral geniculate nucleus (LGN). Animal studies have shown substantial experience dependent plasticity and using fMRI, human studies have demonstrated similar properties in patients with cataract surgery. However, in neither animal nor human studies LGN has not been directly assessed, mainly due to its small size, tissue heterogeneity, low contrast/noise ratio, and low spatial resolution.</p><p><strong>Methods: </strong>Utilizing a new algorithm that markedly improves the LGN visibility, LGN was evaluated in a group of low vision patients before and after retinal intervention to reinstate vision and normal sighted matched controls.</p><p><strong>Results: </strong>Between and within groups comparisons showed that patients had significantly smaller left (p< 0.0001) and right (p < 0.00002) LGN volumes at baseline as compared to the one-year follow-up volumes. The same baseline and one year comparison in controls was not significant. Significant positive correlations were observed between the incremental volume increase after gene therapy of the left LGN and the incremental increase in the right (r = 0.71, p < 0.02) and left (r = 0.72, p = 0.018) visual fields. Incremental volume increase of the right LGN also showed a similar positive slope but did not reach significance.</p><p><strong>Discussion: </strong>These results show that despite significantly less volume at baseline, retinal gene therapy promotes robust expansion and increase in LGN volume. Reinstating vision may have facilitated the establishment of new connections between the retina and the LGN and/or unmasking of the dormant connections. The exact trajectory of the structural changes taking place in LGN is unclear but our data shows that even after years of low vision, the LGN in RPE65 patients has the potential for plasticity and expansion to a nearly normal volume one year after gene therapy administration.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"14 ","pages":"137-147"},"PeriodicalIF":4.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/39/70/eb-14-137.PMC9749418.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9489794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of High Mobility Group Box 1 Protein in Optic Nerve Damage in Diabetes. 高迁移率组1蛋白在糖尿病视神经损伤中的作用
IF 4.4
Eye and Brain Pub Date : 2022-01-01 DOI: 10.2147/EB.S352730
Ghulam Mohammad, Renu A Kowluru
{"title":"Involvement of High Mobility Group Box 1 Protein in Optic Nerve Damage in Diabetes.","authors":"Ghulam Mohammad,&nbsp;Renu A Kowluru","doi":"10.2147/EB.S352730","DOIUrl":"https://doi.org/10.2147/EB.S352730","url":null,"abstract":"<p><strong>Introduction: </strong>Diabetic patients routinely have high levels of high mobility group box 1 (HMGB1) protein in their plasma, vitreous and ocular membranes, which is strongly correlated with subclinical chronic inflammation in the eye. Our previous work has suggested that high HMGB1 in diabetes plays a role in retinal inflammation and angiogenesis, but its role in the optic nerve damage is unclear. Therefore, our goal is to examine the role of HMGB1 in optic nerve damage in diabetes.</p><p><strong>Methods: </strong>Gene expression of HMGB1 was quantified in the optic nerve from streptozotocin-induced diabetic mice by qRT-PCR, and their protein expressions by Western blot analysis and immunofluorescence staining. Using immunohistochemical technique, expression of reactive astrogliosis (indicator of neuroinflammation) and nerve demyelination/damage were determined by quantifying glial fibrillary acid protein (GFAP) and myelin basic protein (MBP), respectively. The role of HMGB1 in the optic nerve damage and alteration visual pathways was confirmed in mice receiving glycyrrhizin, a HMGB1 inhibitor. Similar parameters were measured in the optic nerve from human donors with diabetes.</p><p><strong>Results: </strong>Compared to normal mice, diabetic mice exhibited increased levels of HMGB1, higher GFAP expression, and decreased MBP in the optic nerve. Double immunofluorescence microscopy revealed that diabetes induced increased HMGB1 immunoreactivities were significantly colocalized with GFAP in the optic nerve. Glycyrrhizin supplementation effectively reduced HMGB1 and maintained normal axonal myelination and visual conduction. Results from mice optic nerve confirmed the results obtained from human donors with diabetes.</p><p><strong>Discussions: </strong>Thus, diabetes-induced HMGB1 upregulation promotes optic nerve demyelination and inflammation. The regulation of HMGB1 activation has potential to protect optic nerve damage and the abnormalities of visual pathways in diabetic patients.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"14 ","pages":"59-69"},"PeriodicalIF":4.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/66/39/eb-14-59.PMC9109986.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9756010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuro-Ophthalmological Optic Nerve Cupping: An Overview. 神经眼科视神经拔火罐:综述。
IF 4.4
Eye and Brain Pub Date : 2021-12-14 eCollection Date: 2021-01-01 DOI: 10.2147/EB.S272343
Ethan Waisberg, Jonathan A Micieli
{"title":"Neuro-Ophthalmological Optic Nerve Cupping: An Overview.","authors":"Ethan Waisberg,&nbsp;Jonathan A Micieli","doi":"10.2147/EB.S272343","DOIUrl":"https://doi.org/10.2147/EB.S272343","url":null,"abstract":"<p><p>Optic nerve cupping or enlargement of the cup-to-disc ratio is widely recognized as a feature of glaucoma, however it may also occur in non-glaucomatous optic neuropathies. The most well-recognized non-glaucomatous optic neuropathies that cause cupping include compressive optic neuropathies, arteritic anterior ischemic optic neuropathies, hereditary optic neuropathies, and optic neuritis. Cupping is thought to consist of two main components: prelaminar and laminar thinning. The former is a shallow form of cupping and related to loss of retinal ganglion cells, whereas the latter involves damage to the lamina cribrosa and peripapillary scleral connective tissue. Differentiating glaucomatous and non-glaucomatous optic nerve cupping remains challenging even for experienced observers. Classically, the optic nerve in non-glaucomatous causes has pallor of the neuroretinal rim, but the optic nerve should not be examined in isolation. The patient's medical history, history of presenting illness, visual function (visual acuity, color vision and visual field testing) and ocular examination also need to be considered. Ancillary testing such as optical coherence tomography of the retinal nerve fiber layer and ganglion cell layer-inner plexiform layer may also be helpful in localizing the disease. In this review, we review the non-glaucomatous causes of cupping and provide an approach to evaluating a patient that presents with an enlarged cup-to-disc ratio.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"13 ","pages":"255-268"},"PeriodicalIF":4.4,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/66/ad/eb-13-255.PMC8684388.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39607542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Neuro-Ophthalmic Complications of Vestibular Schwannoma Resection: Current Perspectives. 前庭神经鞘瘤切除术的神经眼科并发症:目前的观点。
IF 4.4
Eye and Brain Pub Date : 2021-10-01 eCollection Date: 2021-01-01 DOI: 10.2147/EB.S272326
Stephanie J Chiu, Simon J Hickman, Irene M Pepper, Jennifer H Y Tan, John Yianni, Joanna M Jefferis
{"title":"Neuro-Ophthalmic Complications of Vestibular Schwannoma Resection: Current Perspectives.","authors":"Stephanie J Chiu,&nbsp;Simon J Hickman,&nbsp;Irene M Pepper,&nbsp;Jennifer H Y Tan,&nbsp;John Yianni,&nbsp;Joanna M Jefferis","doi":"10.2147/EB.S272326","DOIUrl":"https://doi.org/10.2147/EB.S272326","url":null,"abstract":"<p><p>Vestibular schwannomas (VSs), also called acoustic neuromas, are benign intracranial neoplasms of the vestibulocochlear (VIII) cranial nerve. Management options include \"wait-and-scan,\" stereotactic radiosurgery and surgical resection. Due to the proximity of the VIII nerve to the facial (VII) nerve in the cerebello-pontine angle, the VII nerve is particularly vulnerable to the effects of surgical resection. This can result in poor eye closure, lagophthalmos and resultant corneal exposure post VS resection. Additionally, compression from the tumor or resection can cause trigeminal (V) nerve damage and a desensate cornea. The combination of an exposed and desensate cornea puts the eye at risk of serious ocular complications including persistent epithelial defects, corneal ulceration, corneal vascularization, corneal melting and potential perforation. The abducens (VI) nerve can be affected by a large intracranial VS causing raised intracranial pressure (a false localizing sign) or as a result of damage to the VI nerve at the time of resection. Other types of neurogenic strabismus are rare and typically transient. Contralaterally beating nystagmus as a consequence of vestibular dysfunction is common post-operatively. This generally settles to pre-operative levels as central compensation occurs. Ipsilaterally beating nystagmus post-operatively should prompt investigation for post-operative cerebrovascular complications. Papilledema (and subsequent optic atrophy) can occur as a result of a large VS causing raised intracranial pressure. Where papilledema follows surgical resection of a VS, it can indicate that cerebral venous sinus thrombosis has occurred. Poor visual function following VS resection can result as a combination of all these potential complications and is more likely with larger tumors.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"13 ","pages":"241-253"},"PeriodicalIF":4.4,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/eb/24/eb-13-241.PMC8491867.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39495188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studies Utilizing Current Estimated CSF Pressure Equations Should Not Be Conducted and Published [Letter]. 利用目前估计的脑脊液压力方程的研究不应进行和发表[信]。
IF 4.4
Eye and Brain Pub Date : 2021-09-24 eCollection Date: 2021-01-01 DOI: 10.2147/EB.S338935
David Fleischman, Hanspeter E Killer
{"title":"Studies Utilizing Current Estimated CSF Pressure Equations Should Not Be Conducted and Published [Letter].","authors":"David Fleischman,&nbsp;Hanspeter E Killer","doi":"10.2147/EB.S338935","DOIUrl":"https://doi.org/10.2147/EB.S338935","url":null,"abstract":"1Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 2Department of Ophthalmology, Kantonsspital Aarau, Aarau, Switzerland Dear editor We took interest in the recent article by Qian Wang and colleagues, “Prevalence of Retinal Vein Occlusions and Estimated Cerebrospinal Fluid Pressure: The Kailuan Eye Study.” We agree with the authors that CSF pressure, in particular the perioptic subarachnoid space pressure, is likely important in the development of many cases of retinal vein occlusions. However, we were troubled by the methodology employed by the study team. While we appreciate the mention of our study that had found that formulae used to predict CSFP derived from clinical data were unable to accurately estimate CSF pressures, we were surprised that this formula was nonetheless used in the current study. Even more troubling is that the reference given for the justification of the formula, “eCSFP [mm Hg] = 0.44 * BMI [kg/m2] + 0.16 * DBP [mm Hg] – 0.18 * Age [years],” does not in fact explain its derivation. The Xie study from Critical Care used patientspecific anatomic measurements derived from MRI data in order to estimate CSFP, an important factor that has been excluded from the current study’s equation. CSF pressure is not static. It varies over time as a function of the production and resorption rate of CSF and body posture. A formula that is derived top down from preexisting data (such as BMI and DBP) is far from representing the complexity of CSF dynamics, including CSF pressure. Neither is CSF pressure and composition homogeneous throughout all CSF-containing spaces. Further, even if it could reflect the appropriate CSF pressure in the lumbar spine region, it is purely speculative to assume that this measurement could be extrapolated to the pressure within the subarachnoid space of the optic nerve. Several studies in patients with papilledema as well as normal tension glaucoma demonstrated “comparted” optic nerve sheaths, a finding that cautions even the assumption that the pressure measured at the lumber site reflects the pressure in the perioptic space. Thus, to assume that all CSF spaces connect via a linear continuum can be quite misleading. In conclusion, we are strongly supportive of research that will further the understanding of the cerebrospinal fluid’s role in ophthalmic disease. However, bad data are worse than no data. We would have expected that the limitations of such a study should have been clearly explained to the reader who may not be familiar with this complex topic, and we discourage the use of unvalidated formulae for CSF and ophthalmic research. Correspondence: David Fleischman Department of Ophthalmology, University of North Carolina at Chapel Hill, 5126 Bioinformatics Bldg #7040, Chapel Hill, NC, 27599-7040, USA Tel +1 919 259-9336 Fax +1 919 966-1908 Email david8fleischman@gmail.com","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"13 ","pages":"239-240"},"PeriodicalIF":4.4,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e2/e2/eb-13-239.PMC8478159.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39474085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitivity and Specificity of New Visual Field Screening Software for Diagnosing Hemianopia. 新型视野筛查软件诊断偏视的敏感性和特异性。
IF 4.4
Eye and Brain Pub Date : 2021-08-29 eCollection Date: 2021-01-01 DOI: 10.2147/EB.S315403
Supharat Jariyakosol, Patcharaporn Jaru-Ampornpan, Anita Manassakorn, Rath Itthipanichpong, Parima Hirunwiwatkul, Visanee Tantisevi, Thanapong Somkijrungroj, Prin Rojanapongpun
{"title":"Sensitivity and Specificity of New Visual Field Screening Software for Diagnosing Hemianopia.","authors":"Supharat Jariyakosol,&nbsp;Patcharaporn Jaru-Ampornpan,&nbsp;Anita Manassakorn,&nbsp;Rath Itthipanichpong,&nbsp;Parima Hirunwiwatkul,&nbsp;Visanee Tantisevi,&nbsp;Thanapong Somkijrungroj,&nbsp;Prin Rojanapongpun","doi":"10.2147/EB.S315403","DOIUrl":"https://doi.org/10.2147/EB.S315403","url":null,"abstract":"<p><strong>Purpose: </strong>To assess the diagnostic accuracy of visual field results generated by the newly developed software (CU-VF) and the standard automated perimetry (SAP) for detecting hemianopia.</p><p><strong>Patients and methods: </strong>Forty-three subjects with hemianopia and 33 controls were tested with the CU-VF software on a personal computer and SAP. Hemianopia was defined as the presence of a hemianopic field respecting the vertical meridian on SAP with the corresponding neuroimaging pathology as evaluated by 2 neuro-ophthalmologists. Results of CU-VF were independently evaluated by 2 neuro-ophthalmologists, 1 general ophthalmologist, and 1 general practitioner in terms of the presence of hemianopia. Sensitivity, specificity, and kappa coefficient for inter-observer reliability were calculated. Satisfaction and ease of use were evaluated with a visual analog-scale questionnaire and analyzed using paired <i>t</i>-test.</p><p><strong>Results: </strong>The sensitivity (95% CI) and specificity (95% CI) of the CU-VF to detect hemianopia was 74.42% (58.53-85.96) and 93.94% (78.38-99.94). Kappa coefficient between neuro-ophthalmologists versus general ophthalmologist and general practitioner were 0.71 and 0.84, respectively. The mean (SD) test duration was 2.25 (0.002) minutes for the CU-VF and 5.38 (1.34) minutes for SAP (p < 0.001). Subjects reported significantly higher satisfaction and comfort using the CU-VF software compared to SAP.</p><p><strong>Conclusion: </strong>The CU-VF screening software showed good validity and reliability to detect hemianopia, with shorter test duration and higher subject satisfaction compared to SAP.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"13 ","pages":"231-238"},"PeriodicalIF":4.4,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/99/a8/eb-13-231.PMC8412821.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39409406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Efficacy and Safety of Proton Beam Therapy for Primary Optic Nerve Sheath Meningioma. 质子束治疗原发性视神经鞘脑膜瘤的疗效和安全性。
IF 4.4
Eye and Brain Pub Date : 2021-08-24 eCollection Date: 2021-01-01 DOI: 10.2147/EB.S305822
Rabih Hage, Claire Alapetite, Hervé Brisse, Kevin Zuber, Augustin Lecler, Guillaume Lot, Caroline Le Guerinel, Catherine Vignal-Clermont, Herve Boissonnet
{"title":"Efficacy and Safety of Proton Beam Therapy for Primary Optic Nerve Sheath Meningioma.","authors":"Rabih Hage,&nbsp;Claire Alapetite,&nbsp;Hervé Brisse,&nbsp;Kevin Zuber,&nbsp;Augustin Lecler,&nbsp;Guillaume Lot,&nbsp;Caroline Le Guerinel,&nbsp;Catherine Vignal-Clermont,&nbsp;Herve Boissonnet","doi":"10.2147/EB.S305822","DOIUrl":"https://doi.org/10.2147/EB.S305822","url":null,"abstract":"<p><strong>Purpose: </strong>Management of optic nerve sheath meningiomas (ONSM) remains challenging. Photon radiation therapy (PhRT) is the most common treatment for sight-threatening ONSM. Proton beam therapy (PBT) is less commonly used because it is more expensive and because there are questions about its efficacy specifically in relation to ONSM. PBT has the theoretical advantage of reducing radiation exposure to adjacent structures. We report the visual outcome of patients with primary ONSM managed at the Fondation Ophtalmologique Adolphe de Rothschild, Paris, France, and treated with PBT at the Centre de Protonthérapie, Institut Curie, Orsay, France.</p><p><strong>Methods: </strong>We conducted a retrospective review of all patients with primary ONSM who received PBT (either by itself or following surgery) between January 2006 and January 2019. Neuro-ophthalmic examinations were performed at presentation and after radiotherapy, and, when applicable, after surgery. Meningiomas were measured at the time of diagnosis and at each follow-up MRI examination.</p><p><strong>Results: </strong>Sixty patients (50 women, 10 men; mean age, 45.2±11.1y) were included, of whom 29 underwent surgery. At presentation, 52 (87%) of them had decreased vision (average visual acuity: 0.6 logMAR). Fundus examination showed optic disc swelling (n=27; 46.5%), optic disc pallor (n=22; 37.9%), optic disc cupping (n=2; 3.4%), opto-ciliary shunt (n=8; 13.8%), or choroidal folds (n=5; 8.6%). Otherwise, it was unremarkable (n=7; 12.1%). After treatment, visual function was stable overall. Fundus examination showed pallor (n=47; 83.9%), swelling (n=3; 5.4%), or cupping (n=2; 3.4%) of the optic disc, or was unremarkable (n=5; 8.9%). The visual field of 8 patients worsened, while 3 developed asymptomatic retinal hemorrhages. Tumor shrunk significantly in 8 patients at 1 year after PBT and remained stable in size in all others. Patients with opto-ciliary shunts had significantly worse visual outcome than other patients. Retinal abnormalities were observed in 11 patients during follow-up.</p><p><strong>Conclusion: </strong>PBT alone or in association with surgery appears to be a safe and efficient treatment for ONSM, reducing the tumor size and stabilizing visual function. The risk of developing radiation retinopathy seems to be higher when patients had upfront surgery.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"13 ","pages":"219-229"},"PeriodicalIF":4.4,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ca/17/eb-13-219.PMC8402992.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39371652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Retinal Microvasculature in Schizophrenia. 精神分裂症患者的视网膜微血管
IF 4.4
Eye and Brain Pub Date : 2021-07-24 eCollection Date: 2021-01-01 DOI: 10.2147/EB.S317186
Steven M Silverstein, Adriann Lai, Kyle M Green, Christen Crosta, Samantha I Fradkin, Rajeev S Ramchandran
{"title":"Retinal Microvasculature in Schizophrenia.","authors":"Steven M Silverstein, Adriann Lai, Kyle M Green, Christen Crosta, Samantha I Fradkin, Rajeev S Ramchandran","doi":"10.2147/EB.S317186","DOIUrl":"10.2147/EB.S317186","url":null,"abstract":"<p><strong>Purpose: </strong>Schizophrenia is associated with alterations in neural structure and function of the retina that are similar to changes seen in the retina and brain in multiple neurodegenerative disorders. Preliminary evidence suggests that retinal microvasculature may also be compromised in schizophrenia. The goal of this study was to determine, using optical coherence tomography angiography (OCTA), whether 1) schizophrenia is associated with alterations in retinal microvasculature density; and 2) microvasculature reductions are associated with retinal neural layer thinning and performance on a measure of verbal IQ.</p><p><strong>Patients and methods: </strong>Twenty-eight outpatients with schizophrenia or schizoaffective disorder and 37 psychiatrically healthy control subjects completed OCT and OCTA exams, and the Wechsler Test of Adult Reading.</p><p><strong>Results: </strong>Schizophrenia patients were characterized by retinal microvasculature density reductions, and enlarged foveal avascular zones, in both eyes. These microvascular abnormalities were generally associated with thinning of retinal neural (macular and peripapillary nerve fiber layer) tissue (but the data were stronger for the left than the right eye) and lower scores on a proxy measure of verbal IQ. First- and later-episode patients did not differ significantly on OCTA findings.</p><p><strong>Conclusion: </strong>The retinal microvasculature impairments seen in schizophrenia appear to be a biomarker of overall brain health, as is the case for multiple neurological conditions. Additional research is needed, however, to clarify contributions of social disadvantage and medical comorbidities to the findings.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"13 ","pages":"205-217"},"PeriodicalIF":4.4,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/52/76/eb-13-205.PMC8318708.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39264553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuro-Ophthalmological Manifestations in Children with Down Syndrome: Current Perspectives. 唐氏综合症儿童的神经-眼科表现:目前的观点。
IF 4.4
Eye and Brain Pub Date : 2021-07-21 eCollection Date: 2021-01-01 DOI: 10.2147/EB.S319817
Lavinia Postolache, Anne Monier, Sophie Lhoir
{"title":"Neuro-Ophthalmological Manifestations in Children with Down Syndrome: Current Perspectives.","authors":"Lavinia Postolache,&nbsp;Anne Monier,&nbsp;Sophie Lhoir","doi":"10.2147/EB.S319817","DOIUrl":"https://doi.org/10.2147/EB.S319817","url":null,"abstract":"<p><p>Down syndrome, caused by an extra copy of all or part of chromosome 21, is the most prevalent intellectual disability of genetic origin. Among numerous comorbidities which are part of the phenotype of individuals with Down syndrome, ocular problems appear to be highly prevalent. Neuro-ophthalmological manifestations, such as ocular alignment and motility disturbances, amblyopia, hypoaccommodation or optic nerve abnormalities, and other organic ocular anomalies frequently reported in Down syndrome, may lead to an overall decrease in visual acuity. Although numerous studies have reported ocular anomalies related to Down syndrome, it remains challenging to determine the impact of each anomaly upon the decreased visual acuity, as most such individuals have more than one ocular problem. Even in children with Down syndrome and no apparent ocular defect, visual acuity has been found to be reduced compared with typically developing children. Pediatric ophthalmological examination is a critical component of a multidisciplinary approach to prevent and treat ocular complications and improve the visual outcome in children with Down syndrome. This narrative review aims to provide a better understanding of the neuro-ophthalmological manifestations and discuss the current ophthalmological management in children with Down syndrome.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"13 ","pages":"193-203"},"PeriodicalIF":4.4,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f4/10/eb-13-193.PMC8311006.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39254737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信