{"title":"Changes in Ocular Biomarkers from Normal Cognitive Aging to Alzheimer's Disease: A Pilot Study.","authors":"Pareena Chaitanuwong, Supharat Jariyakosol, Supanut Apinyawasisuk, Parima Hirunwiwatkul, Hathairat Lawanlattanagul, Solaphat Hemrungrojn, Yuda Chongpison","doi":"10.2147/EB.S391608","DOIUrl":"https://doi.org/10.2147/EB.S391608","url":null,"abstract":"<p><strong>Purpose: </strong>To identify ophthalmic findings in Alzheimer's type dementia (ATD) compared to normal subjects.</p><p><strong>Patients and methods: </strong>This comparative descriptive study included participants from the institution's cognitive fitness center. Complete ophthalmic examinations were performed. Optical coherence tomography (OCT) and OCT angiography (OCTA) were used to analyze retinal thickness and vascular density. The Ocular Surface Disease Index (OSDI) score and tear breakup time (TBUT) were used to assess dry eye. The blink rate was counted by a well-trained observer. Cognitive function was evaluated using the Thai Mental State Examination (TMSE) score. Correlation analysis was performed to compare OCT, OCTA parameters, and TMSE.</p><p><strong>Results: </strong>We included 24 ATD patients and 39 normal participants as a control group by age and sex-matched. The prevalence of dry eye using the Asia Dry Eye Society criteria was 15% and 13% in normal and ATD patients, respectively. The differences in OSDI scores, TBUT, and blink rate between the two groups were not statistically significant. The parafoveal and perifoveal macular thickness of the ATD group were significantly lower than that of the control group (p<0.01). All parameters of the vessel density of the ATD group were significantly lower than in the control group, including the whole macular vessel density (p<0.01), optic disc vessel density at the nerve head level (p<0.01), and optic disc vessel density at the radial peripapillary capillary level (p<0.05). After age adjustment, there were no statistically significant differences in all the OCT and OCTA parameters. There was a positive correlation between retinal thickness and vessel density in the macular and optic disc region and TMSE scores.</p><p><strong>Conclusion: </strong>Perifoveal and parafoveal retinal thickness might be more sensitive than peripapillary RNFL thickness to detect neurodegenerative changes in patients with ATD. Macular thickness and vessel density reduction were also positively correlated with cognitive decline.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"15 ","pages":"15-23"},"PeriodicalIF":4.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1e/df/eb-15-15.PMC9986468.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9081349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eye and BrainPub Date : 2023-01-01DOI: 10.2147/EB.S401306
Peter Wostyn, Hanspeter Esriel Killer
{"title":"Normal-Tension Glaucoma: A Glymphopathy?","authors":"Peter Wostyn, Hanspeter Esriel Killer","doi":"10.2147/EB.S401306","DOIUrl":"https://doi.org/10.2147/EB.S401306","url":null,"abstract":"<p><p>Glaucoma is one of the main causes of irreversible blindness in the world. The most common form, primary open-angle glaucoma, is an optic neuropathy that is characterized by a progressive loss of retinal ganglion cells and their axons, leading to structural changes in the optic nerve head and associated visual field defects. Elevated intraocular pressure remains the most important modifiable risk factor for primary open-angle glaucoma. However, a significant proportion of patients develop glaucomatous damage in the absence of increased intraocular pressure, a condition known as normal-tension glaucoma (NTG). The pathophysiology underlying NTG remains unclear. Several studies have revealed that vascular and cerebrospinal fluid (CSF) factors may play significant roles in the development of NTG. Vascular failure caused by functional or structural abnormalities, and compartmentation of the optic nerve subarachnoid space with disturbed CSF dynamics have been shown to be associated with NTG. In the present article, based on the concept of the glymphatic system and observations in patients with NTG, we hypothesize that failure of fluid transport via the glymphatic pathway in the optic nerve may be involved in the pathogenesis of some if not many cases of NTG. According to this hypothesis, vascular and CSF factors may share reduced glymphatic transport and perivascular waste clearance in the optic nerve as a final common pathway leading to the development of NTG. In addition, we speculate that some cases of NTG may reflect glymphatic dysfunction in natural brain aging and central nervous system diseases, such as Alzheimer's disease. Clearly, further studies are needed to gain additional insight into the relative contribution of these factors and conditions to reduced glymphatic transport in the optic nerve.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"15 ","pages":"37-44"},"PeriodicalIF":4.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a5/aa/eb-15-37.PMC10086217.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9359977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eye and BrainPub Date : 2023-01-01DOI: 10.2147/EB.S409905
Brendan L Portengen, Giorgio L Porro, Douwe Bergsma, Evert J Veldman, Saskia M Imhof, Marnix Naber
{"title":"Effects of Stimulus Luminance, Stimulus Color and Intra-Stimulus Color Contrast on Visual Field Mapping in Neurologically Impaired Adults Using Flicker Pupil Perimetry.","authors":"Brendan L Portengen, Giorgio L Porro, Douwe Bergsma, Evert J Veldman, Saskia M Imhof, Marnix Naber","doi":"10.2147/EB.S409905","DOIUrl":"https://doi.org/10.2147/EB.S409905","url":null,"abstract":"<p><strong>Purpose: </strong>We improve pupillary responses and diagnostic performance of flicker pupil perimetry through alterations in global and local color contrast and luminance contrast in adult patients suffering from visual field defects due to cerebral visual impairment (CVI).</p><p><strong>Methods: </strong>Two experiments were conducted on patients with CVI (Experiment 1: 19 subjects, age M and SD 57.9 ± 14.0; Experiment 2: 16 subjects, age M and SD 57.3 ± 14.7) suffering from absolute homonymous visual field (VF) defects. We altered global color contrast (stimuli consisted of white, yellow, cyan and yellow-equiluminant-to-cyan colored wedges) in Experiment 1, and we manipulated luminance and local color contrast with bright and dark yellow and multicolor wedges in a 2-by-2 design in Experiment 2. Stimuli consecutively flickered across 44 stimulus locations within the inner 60 degrees of the VF and were offset to a contrasting (opponency colored) dark background. Pupil perimetry results were compared to standard automated perimetry (SAP) to assess diagnostic accuracy.</p><p><strong>Results: </strong>A bright stimulus with global color contrast using yellow (<i>p</i>= 0.009) or white (<i>p</i>= 0.006) evoked strongest pupillary responses as opposed to stimuli containing local color contrast and lower brightness. Diagnostic accuracy, however, was similar across global color contrast conditions in Experiment 1 (<i>p</i>= 0.27) and decreased when local color contrast and less luminance contrast was introduced in Experiment 2 (<i>p</i>= 0.02). The bright yellow condition resulted in highest performance (AUC M = 0.85 ± 0.10, Mdn = 0.85).</p><p><strong>Conclusion: </strong>Pupillary responses and pupil perimetry's diagnostic accuracy both benefit from high luminance contrast and global but not local color contrast.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"15 ","pages":"77-89"},"PeriodicalIF":4.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a6/29/eb-15-77.PMC10243349.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9603169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eye and BrainPub Date : 2023-01-01DOI: 10.2147/EB.S407481
Elie de Lestrange-Anginieur
{"title":"Meridional Attentional Asymmetries in Astigmatic Eyes.","authors":"Elie de Lestrange-Anginieur","doi":"10.2147/EB.S407481","DOIUrl":"https://doi.org/10.2147/EB.S407481","url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the impact of attention orientation in young myopic adults with astigmatism.</p><p><strong>Methods: </strong>The effect of attention on foveal meridional performance and anisotropy was measured in corrected myopes with various levels of astigmatism (with-the-rule astigmatism ≤ -0.75D, Axis: 180 ± 20) using orientation-based attention. Attention was manipulated by instructing subjects to attend to either the horizontal or the vertical line of a central pre-stimulus (a pulsed cross) along separate blocks of trials. For each attention condition, meridional acuity and reaction times were measured via an annulus Gabor target situated remotely from the cross and presented at random horizontally and vertically in a two-alternative forced-choice employing two interleaved staircase procedures (one-up/one-down). Attention modulations were estimated by the difference in performance between horizontal and vertical attention.</p><p><strong>Results: </strong>Foveal meridional performance and anisotropy were strongly affected by the orientation of attention, which appeared critical for the enhancement of reaction times and resolution. Under congruent orienting of attention, foveal meridional anisotropy was correlated with the amount of defocus for both reaction time and resolution, demonstrating greater vertical performance than horizontal performance as myopia increased. Compatible with an attentional compensation of blur through optimal orienting of attention, vertical attention enhanced reaction times compared to horizontal attention and was accompanied by an increase in overall acuity when myopia increased. Increased astigmatism was associated with smaller attention effects and asymmetry, suggesting potential deficits in the compensation of blur in astigmatic eyes.</p><p><strong>Conclusion: </strong>Collectively, attention to orientation plays a significant role in horizontal-vertical foveal meridional anisotropy and can modulate the asymmetry of foveal perception imposed by the optics of the eye in episodes of uncorrected vision. Further work is necessary to understand how attention and refractive errors interact during visual development. These results may have practical implications for methods to enhance vision with attention training in myopic astigmats.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"15 ","pages":"63-76"},"PeriodicalIF":4.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c9/21/eb-15-63.PMC10188198.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9483868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eye and BrainPub Date : 2022-11-25eCollection Date: 2022-01-01DOI: 10.2147/EB.S383231
Achim Fieß, Marilena Brandt, Eva Mildenberger, Michael Siegfried Urschitz, Felix Mathias Wagner, Stephanie Desiree Grabitz, Esther Maria Hoffmann, Norbert Pfeiffer, Alexander Konrad Schuster
{"title":"Adults Born Small for Gestational Age at Term Have Thinner Peripapillary Retinal Nerve Fiber Layers Than Controls.","authors":"Achim Fieß, Marilena Brandt, Eva Mildenberger, Michael Siegfried Urschitz, Felix Mathias Wagner, Stephanie Desiree Grabitz, Esther Maria Hoffmann, Norbert Pfeiffer, Alexander Konrad Schuster","doi":"10.2147/EB.S383231","DOIUrl":"https://doi.org/10.2147/EB.S383231","url":null,"abstract":"<p><strong>Purpose: </strong>Prenatal growth restriction is associated with impaired neurodevelopment in childhood. This study investigated the effects of being born small for gestational age (SGA) on peripapillary retinal nerve fiber layer (pRNFL) thickness in adults born at term.</p><p><strong>Methods: </strong>A retrospective cohort study was conducted with a prospective ophthalmologic examination of participants born at full-term (gestational age ≥37 weeks) between 1969 and 2002. All participants were examined with spectral-domain optical coherence tomography and grouped according to their birth weight in correlation to gestational age as former moderate (birth weight (BW) percentile 3rd to <10th) and severe SGA (<3rd percentile), normal (10th-90th percentile, AGA), and moderately (>90th to 97th percentile) and severely (>97th percentile) large for gestational age (LGA) adults (18 to 52 years).</p><p><strong>Results: </strong>Overall, 547 eyes of 285 individuals (age 29.9±9.4 years, 151 females) born at term were included. Multivariable regression analyses revealed a strong association between a lower global pRNFL thickness in the severe SGA (B=-8.99 [95%-CI: -12.68; -5.30] µm; p<0.001) and in the moderate SGA groups (B=-6.40 [95%-CI: -10.29; -2.50] µm; p=0.001) compared to the reference AGA group.</p><p><strong>Conclusion: </strong>Our results indicate that restricted fetal growth affects neurologic tissue development of the optic nerve head, particularly in individuals born severely SGA at term. This indicates that fetal growth restriction may exert disturbances in the development of neurologic tissue, which persists in adulthood.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":" ","pages":"127-135"},"PeriodicalIF":4.4,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3c/df/eb-14-127.PMC9709856.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35253933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Value of Optic Nerve Sheath Diameter in Diagnosis and Follow Up of Patients with Disturbed Conscious Level.","authors":"Osama Mahmoud Momtaz, Omar M Said, Amany Mahmoud Mohamed, Tamer Sayed Abdel Mawla","doi":"10.2147/EB.S369813","DOIUrl":"https://doi.org/10.2147/EB.S369813","url":null,"abstract":"<p><strong>Background: </strong>Ultrasonographic measurement of optic nerve sheath diameter is a simple, non-invasive, and reliable method of detecting elevated intracranial pressure (ICP) in critical patients. Optic nerve sheath communicates with the dura mater covering the brain and contains cerebrospinal fluid, allowing pressure transmission from the cranium. Therefore, changes in cerebrospinal fluid (CSF) pressure have been shown to produce changes in ONSD.</p><p><strong>Objective: </strong>This study aimed to assess the accuracy of optic nerve sheath diameter (ONSD) in diagnosis and follow-up patients with disturbed conscious levels compared with CT brain and fundus examination.</p><p><strong>Patients and methods: </strong>One hundred forty-one participants were included in the study, classified into 76 cases admitted with disturbed conscious levels due to elevated ICP and 65 controls. All patients were subjected to CT brain and optic nerve US and fundus examination at the time of admission and follow-up after 48 h after proper management.</p><p><strong>Results: </strong>The current study showed that ONSD is significant in predicting elevated ICP at the cut-off point of average ONSD of 5.19 mm with 97% sensitivity and 98% specificity, and the area under the curve (AUC) was 0.996. The present study revealed a significant inverse correlation between ONSD and GCS in patients with increased ICP.</p><p><strong>Conclusion: </strong>Ultrasonic measurement of ONSD is a promising technique in diagnosing and following patients with disturbed conscious levels.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":" ","pages":"115-126"},"PeriodicalIF":4.4,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5b/4a/eb-14-115.PMC9526430.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33487194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eye and BrainPub Date : 2022-09-08eCollection Date: 2022-01-01DOI: 10.2147/EB.S361946
Matthew A McDonald, Clark H Stevenson, Hannah M Kersten, Helen V Danesh-Meyer
{"title":"Eye Movement Abnormalities in Glaucoma Patients: A Review.","authors":"Matthew A McDonald, Clark H Stevenson, Hannah M Kersten, Helen V Danesh-Meyer","doi":"10.2147/EB.S361946","DOIUrl":"https://doi.org/10.2147/EB.S361946","url":null,"abstract":"Abstract Glaucoma is a common condition that relies on careful clinical assessment to diagnose and determine disease progression. There is growing evidence that glaucoma is associated not only with loss of retinal ganglion cells but also with degeneration of cortical and subcortical brain structures associated with vision and eye movements. The effect of glaucoma pathophysiology on eye movements is not well understood. In this review, we examine the evidence surrounding altered eye movements in glaucoma patients compared to healthy controls, with a focus on quantitative eye tracking studies measuring saccades, fixation, and optokinetic nystagmus in a range of visual tasks. The evidence suggests that glaucoma patients have alterations in several eye movement domains. Patients exhibit longer saccade latencies, which worsen with increasing glaucoma severity. Other saccadic abnormalities include lower saccade amplitude and velocity, and difficulty inhibiting reflexive saccades. Fixation is pathologically altered in glaucoma with reduced stability. Optokinetic nystagmus measures have also been shown to be abnormal. Complex visual tasks (eg reading, driving, and navigating obstacles), integrate these eye movements and result in behavioral adaptations. The review concludes with a summary of the evidence and recommendations for future research in this emerging field.","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":" ","pages":"83-114"},"PeriodicalIF":4.4,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/89/f6/eb-14-83.PMC9467299.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40359286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eye and BrainPub Date : 2022-07-14eCollection Date: 2022-01-01DOI: 10.2147/EB.S358384
Chloé Chamard, Jerome J Maller, Nicolas Menjot, Eloi Debourdeau, Virginie Nael, Karen Ritchie, Isabelle Carriere, Vincent Daien
{"title":"Association Between Vision and Brain Cortical Thickness in a Community-Dwelling Elderly Cohort.","authors":"Chloé Chamard, Jerome J Maller, Nicolas Menjot, Eloi Debourdeau, Virginie Nael, Karen Ritchie, Isabelle Carriere, Vincent Daien","doi":"10.2147/EB.S358384","DOIUrl":"https://doi.org/10.2147/EB.S358384","url":null,"abstract":"<p><strong>Purpose: </strong>Visual impairment is a major cause of disability and impairment of cognitive function in older people. Brain structural changes associated with visual function impairment are not well understood. The objective of this study was to assess the association between visual function and cortical thickness in older adults.</p><p><strong>Methods: </strong>Participants were selected from the French population-based ESPRIT cohort of 2259 community-dwelling adults ≥65 years old enrolled between 1999 and 2001. We considered visual function and brain MRI images at the 12-year follow-up in participants who were right-handed and free of dementia and/or stroke, randomly selected from the whole cohort. High-resolution structural T1-weighted brain scans acquired with a 3-Tesla scanner. Regional reconstruction and segmentation involved using the FreeSurfer image-analysis suite.</p><p><strong>Results: </strong>A total of 215 participants were included (mean [SD] age 81.8 [3.7] years; 53.0% women): 30 (14.0%) had central vision loss and 185 (86.0%) normal central vision. Vision loss was associated with thinner cortical thickness in the right insula (within the lateral sulcus of the brain) as compared with the control group (mean thickness 2.38 [0.04] vs 2.50 [0.03] mm, 4.8% thinning, p<sub>corrected</sub>= 0.04) after adjustment for age, sex, lifetime depression and cardiovascular disease.</p><p><strong>Conclusion: </strong>The present study describes a significant thinning of the right insular cortex in older adults with vision loss. The insula subserves a wide variety of functions in humans ranging from sensory and affective processing to high-level cognitive processing. Reduced insula thickness associated with vision loss may increase cognitive burden in the ageing brain.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":" ","pages":"71-82"},"PeriodicalIF":4.4,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fc/fd/eb-14-71.PMC9292457.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40540555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eye and BrainPub Date : 2022-05-01DOI: 10.2147/EB.S354710
P. Wostyn, T. Mader, C. Gibson, M. Nedergaard
{"title":"Does Long-Duration Exposure to Microgravity Lead to Dysregulation of the Brain and Ocular Glymphatic Systems?","authors":"P. Wostyn, T. Mader, C. Gibson, M. Nedergaard","doi":"10.2147/EB.S354710","DOIUrl":"https://doi.org/10.2147/EB.S354710","url":null,"abstract":"Abstract Spaceflight-associated neuro-ocular syndrome (SANS) has been well documented in astronauts both during and after long-duration spaceflight and is characterized by the development of optic disc edema, globe flattening, choroidal folds, and hyperopic refractive error shifts. The exact mechanisms underlying these ophthalmic abnormalities remain unclear. New findings regarding spaceflight-associated alterations in cerebrospinal fluid spaces, specifically perivascular spaces, may shed more light on the pathophysiology of SANS. The preliminary results of a recent brain magnetic resonance imaging study show that perivascular spaces enlarge under prolonged microgravity conditions, and that the amount of fluid in perivascular spaces is linked to SANS. The exact pathophysiological mechanisms underlying enlargement of perivascular spaces in space crews are currently unclear. Here, we speculate that the dilation of perivascular spaces observed in long-duration space travelers may result from impaired cerebral venous outflow and compromised cerebrospinal fluid resorption, leading to obstruction of glymphatic perivenous outflow and increased periarterial cerebrospinal fluid inflow, respectively. Further, we provide a possible explanation for how dilated perivascular spaces can be associated with SANS. Given that enlarged perivascular spaces in space crews may be a marker of altered venous hemodynamics and reduced cerebrospinal fluid outflow, at the level of the optic nerve and eye, these disturbances may contribute to SANS. If confirmed by further studies, brain glymphatic dysfunction in space crews could potentially be considered a risk factor for the development of neurodegenerative diseases, such as Alzheimer’s disease. Furthermore, long-duration exposure to microgravity might contribute to SANS through dysregulation of the ocular glymphatic system. If prolonged spaceflight exposure causes disruption of the glymphatic systems, this might affect the ability to conduct future exploration missions, for example, to Mars. The considerations outlined in the present paper further stress the crucial need to develop effective long-term countermeasures to mitigate SANS-related physiologic changes during long-duration spaceflight.","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"14 1","pages":"49 - 58"},"PeriodicalIF":4.4,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43062695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eye and BrainPub Date : 2022-03-01DOI: 10.2147/EB.S337333
M. Santorini, T. Ferreira de Moura, S. Barraud, C. Litré, C. Brugniart, A. Denoyer, Z. Djerada, C. Arndt
{"title":"Comparative Evaluation of Two SD-OCT Macular Parameters (GCC, GCL) and RNFL in Chiasmal Compression","authors":"M. Santorini, T. Ferreira de Moura, S. Barraud, C. Litré, C. Brugniart, A. Denoyer, Z. Djerada, C. Arndt","doi":"10.2147/EB.S337333","DOIUrl":"https://doi.org/10.2147/EB.S337333","url":null,"abstract":"Purpose To evaluate the relationship between different macular thickness parameters analyzed by SD-OCT and the central visual field (VF) evaluated with automated kinetic perimetry in a cohort of patients with pituitary tumors. Methods Data from patients with pituitary adenoma treated at Reims University Hospital between October 1st, 2017, and May 31st, 2018 were collected. All patients underwent an automated kinetic perimetry and a SD-OCT to map the ganglion cell complex (GCC), the ganglion cell layer (GCL) thickness and the retinal nerve fiber layer (RNFL) using devices from two different manufacturers. Univariate and multivariate analysis were used to evaluate the correlation between the area of central VF in square degrees (deg2) and the SD-OCT parameters (μm). Results Eighty-eight eyes were included in the analysis. All the thickness parameters measured in SD-OCT decreased with the visual field alteration. The best correlation was observed between superior thickness parameters (GCC, GCL) and the inferior central visual field. The most pertinent predictive factors for visual field loss were the inferior central GCL and the nasal RNFL (both AUC=0.775) with a sensitivity respectively of 86% and 70%. Conclusion This study suggests that both GCC, GCL thickness parameters could be reliable predictors of central visual field impairment in patients with pituitary tumors. There was no significative difference between both devices.","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"14 1","pages":"35 - 48"},"PeriodicalIF":4.4,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68359890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}