{"title":"Concerted Steric and Electronic Strategy in Thermostable Salicylaldiminato Nickel Catalysts for Ethylene (Co)polymerization","authors":"Hong-Yu Ji, Hong-Liang Mu, Chun-Feng Tang, Yu-Xing Zhang, Yue Chi, Zhong-Bao Jian","doi":"10.1007/s10118-024-3148-y","DOIUrl":"10.1007/s10118-024-3148-y","url":null,"abstract":"<div><p>Olefin polymerization is one of the most important chemical reactions in industry. This work presents a strategy that emphasizes the synergistic <i>meta/para</i>-steric hindrance of <i>N</i>-aryl groups and electronic effects in newly synthesized neutral salicylaldiminato nickel catalysts. These nickel(II) catalysts exhibit exceptional thermostability, ranging from 30 °C to 130 °C, demonstrating enhanced catalytic activities and broadly regulated polyethylene molecular weights (3–341 kg·mol<sup>−1</sup>) and controlled polymer branch density (2–102 brs/1000C). The preferred catalyst <b>Ni3</b> with concerted steric and electronic effects enables the production of solid-state semi-crystalline polyethylene materials at temperatures below 90 °C. Notably, <b>Ni3</b> exhibits an impressive tolerance of 110 °C and can withstand even the challenging polymerization temperature of 130 °C, leading to the production of polyethylene wax and oil. Also, functionalized polyethylene is produced.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 8","pages":"1085 - 1092"},"PeriodicalIF":4.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141386520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conformation and Counterion Distribution of Polyelectrolyte in Solution as Viewed from Dielectric Approach","authors":"Kong-Shuang Zhao","doi":"10.1007/s10118-024-3138-0","DOIUrl":"10.1007/s10118-024-3138-0","url":null,"abstract":"<div><p>Polyelectrolyte solutions are more variable than uncharged macromolecule due to electrical interaction between charged molecules and surrounding counterions. Therefore, the subject of polyelectrolyte solutions has attracted a wide range of interests in both basic and applied research, and has also been extensively explored. However, the understanding of the molecular dynamics and conformation of polyelectrolytes in solution remains to be deepened, and universal consensus on some key issues have not been reached. Many methods have contributed to solving the above problems in different ways, including dielectric relaxation spectroscopy (DRS). In this perspective, we briefly reviewed the history of dielectric spectroscopic research on polyelectrolyte solution, with emphasis on summarizing our efforts. In particular, we expound the characteristics of DRS and its ability to obtain the internal information of the system of interest. Finally, we evaluate the advantages and limitations of the dielectric method and discussed future prospects of this field.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 9","pages":"1278 - 1301"},"PeriodicalIF":4.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141386592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrei Vasile Nastuta, Maria Butnaru, Byron Cheatham, Ramona Huzum, Vasile Tiron, Ionut Topala
{"title":"Helium Plasma Effects on Polymer Surfaces: from Plasma Parameters and Surface Properties towards Bioengineering Applications","authors":"Andrei Vasile Nastuta, Maria Butnaru, Byron Cheatham, Ramona Huzum, Vasile Tiron, Ionut Topala","doi":"10.1007/s10118-024-3147-z","DOIUrl":"10.1007/s10118-024-3147-z","url":null,"abstract":"<div><p>Plasma treatment is necessary to optimize the performance of biomaterial surfaces. It enhances and regulates the performance of biomaterial surfaces, creating an effective interface with the human body. Plasma treatments have the ability to modify the chemical composition and physical structure of a surface while leaving its properties unaffected. They possess the ability to modify material surfaces, eliminate contaminants, conduct investigations on cancer therapy, and facilitate wound healing. The subject of study in question involves the integration of plasma science and technology with biology and medicine. Using a helium plasma jet source, applying up to 18 kV, with an average power of 10 W, polymer foils were treated for 60 s. Plasma treatment has the ability to alter the chemical composition and physical structure of a surface while maintaining its quality. This investigation involved the application of helium plasma at atmospheric pressure to polyamide 6 and polyethylene terephthalate sheets. The inquiry involves monitoring and assessing the plasma source and polymer materials, as well as analyzing the impacts of plasma therapy. Calculating the mean power of the discharge aids in assessing the economic efficacy of the plasma source. Electric discharge in helium at atmospheric pressure has beneficial effects in technology, where it increases the surface free energy of polymer materials. In biomedicine, it is used to investigate cytotoxicity and cell survival, particularly in direct blood exposure situations that can expedite coagulation. Comprehending the specific parameters that influence the plasma source in the desired manner for the intended application is of utmost importance.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 8","pages":"1156 - 1166"},"PeriodicalIF":4.1,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation and Structure-Property Regulation Mechanism of Reversible Thermochromic Polydiacetylene","authors":"Zhi-Qing Ge, Shuo Yan, Zu-Xiong Pan, Shan Lei, Xuan-Zhi Mao, Chu Zhao, Mo-Zhen Wang, Xue-Wu Ge","doi":"10.1007/s10118-024-3142-4","DOIUrl":"10.1007/s10118-024-3142-4","url":null,"abstract":"<div><p>The thermochromic mechanism and the structure-property regulation principle of reversible thermochromic polydiacetylene (PDA) materials have always been a challenging issue. In this work, a series of diacetylene monomers (m-PCDA) containing phenyl and amide or carboxyl groups were synthesized from 10,12-pentacosadiynoic acid (PCDA) through the esterification or amidation reactions. The effects of the number and the distribution of the functional groups in m-PCDA molecules on their solid-state polymerization capability, and the thermochromic mechanism of their corresponding polymers (m-PDA) were investigated and discussed in detail. The results show that the m-PCDA monomers containing both benzene ring and groups that can form hydrogen bonding interactions have strong intermolecular interaction, and are easy to carry out the solid phase polymerization under 254-nm UV irradiation to obtain the corresponding new thermochromic m-PDA materials. The thermochromic behavior of m-PDA depends on its melting process. The initial color-change temperature (blue to red) is determined by the onset melting temperature, and the temperature range in which reversible color recovery can be achieved by repeat heating-cooling treatment is determined by its melting range. According to the proposed thermochromic mechanism of PDA, various new PDA materials with precise thermochromic temperatures and reversible thermochromic temperature ranges can be designed and synthesized through the appropriate introduction of benzene ring and groups that can form hydrogen bonding interactions into the molecular structure of linear diacetylene monomer. This work provides a perspective to the precise molecular structure design and the property regulation of the reversible thermochromic PDA materials.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 8","pages":"1111 - 1121"},"PeriodicalIF":4.1,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141192140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrugated Graphene Paper Reinforced Silicone Resin Composite for Efficient Interface Thermal Management","authors":"Bo-Wen Wang, Heng Zhang, Qing-Xia He, Hui-Tao Yu, Meng-Meng Qin, Wei Feng","doi":"10.1007/s10118-024-3159-8","DOIUrl":"10.1007/s10118-024-3159-8","url":null,"abstract":"<div><p>With the rapid development of high-power-density electronic devices, interface thermal resistance has become a critical barrier for effective heat management in high-performance electronic products. Therefore, there is an urgent demand for advanced thermal interface materials (TIMs) with high cross-plane thermal conductivity and excellent compressibility to withstand increasingly complex operating conditions. To achieve this aim, a promising strategy involves vertically arranging highly thermoconductive graphene on polymers. However, with the currently available methods, achieving a balance between low interfacial thermal resistance, bidirectional high thermal conductivity, and large-scale production is challenging. Herein, we prepared a graphene framework with continuous filler structures in in-plane and cross-plane directions by bonding corrugated graphene to planar graphene paper. The interface interaction between the graphene paper framework and polymer matrix was enhanced <i>via</i> surface functionalization to reduce the interface thermal resistance. The resulting three-dimensional thermal framework endows the polymer composite material with a cross-plane thermal conductivity of 14.4 W·m<sup>−1</sup>·K<sup>−1</sup> and in-plane thermal conductivity of 130 W·m<sup>−1</sup>·K<sup>−1</sup> when the thermal filler loading is 10.1 wt%, with a thermal conductivity enhancement per 1 wt% filler loading of 831%, outperforming various graphene structures as fillers. Given its high thermal conductivity, low contact thermal resistance, and low compressive modulus, the developed highly thermoconductive composite material demonstrates superior performance in TIM testing compared with TFLEX-700, an advanced commercial TIM, effectively solving the interfacial heat transfer issues in electronic systems. This novel filler structure framework also provides a solution for achieving a balance between efficient thermal management and ease of processing.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 7","pages":"1002 - 1014"},"PeriodicalIF":4.1,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Effective Approach for the Preparation of High Performance Thermal Conductive Polymer Composites Containing Liquid Metal","authors":"Xin Chen, Xue-Zhong Zhang, Yi-Fei Yuan, Chuan-Liang Chen, Lian-Hu Xiong, Qiang Fu, Hua Deng","doi":"10.1007/s10118-024-3144-2","DOIUrl":"10.1007/s10118-024-3144-2","url":null,"abstract":"<div><p>The preparation of high-performance thermal conductive composites containing liquid metals (LM) has attracted significant attention. However, the stable dispersion of LM within polymer solution and effective property contribution of liquid metals remains significant challenges that need to be overcome. Inspired by the properties of the dendritic structure of the tree root system in grasping the soil, “shear-induced precipitation-interfacial reset-reprotonation” processing strategy is proposed to prepare nanocomposites based on aramid micron fibers (AMFs) with hierarchical dendritic structure. Thanks to the combination of van der Waals force provided by hierarchical dendritic structure, electrostatic interaction between AMFs and LM, coordinative bonding of —NH to LM, together with interfacial re-setting and multi-step protonation, several features can be achieved through such strategy: conducive to the local filler network construction, improvement of interfacial interaction, improvement of the stability of filler dispersion in the solvent, and enhancement of mechanical and thermal properties of the films. The resulting AMFs-pH=4/LM films demonstrate a thermal conductivity of 10.98 W·m<sup>−1</sup>·K<sup>−1</sup> at 70% filler content, improvement of 126.8% compared to ANFs/LM film; while maintaining a strength of ∼85.88 MPa, improvement of 77% compared to AMFs/LM film. They also possess insulation properties, enable heat dissipation for high power electronics. This work provides an effective strategy for the preparation of high performance polymer composites containing liquid metal.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 7","pages":"992 - 1001"},"PeriodicalIF":4.1,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141118701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cross-linked Electrospun Gel Polymer Electrolytes for Lithium-Ion Batteries","authors":"Xue Gong, Qin Xiao, Qing-Yin Li, Wen-Cui Liang, Feng Chen, Long-Yu Li, Shi-Jie Ren","doi":"10.1007/s10118-024-3136-2","DOIUrl":"10.1007/s10118-024-3136-2","url":null,"abstract":"<div><p>Lithium-ion batteries (LIBs) benefit from an effective electrolyte system design in both terms of their safety and energy storage capability. Herein, a series of precursor membranes with high porosity were produced using electrospinning technology by mixing PVDF and triblock copolymer (PS-PEO-PS), resulting in a porous structure with good interconnections, which facilitates the absorbency of a large amount of electrolyte and further increases the ionic conductivity of gel polymer electrolytes (GPEs). It has been demonstrated that post-cross-linking of the precursor membranes increases the rigidity of the nanofibers, which allows the polymer film to be dimensionally stable up to 260 °C while maintaining superior electrochemical properties. The obtained cross-linked GPEs (CGPEs) showed high ionic conductivity up to 4.53×10<sup>−3</sup> S·cm<sup>−1</sup>. With the CGPE-25, the assembled Li/LiFePO<sub>4</sub> half cells exhibited good rate capability and maintained a capacity of 99.4% and a coulombic efficiency of 99.3% at 0.1 C. These results suggest that the combination of electrospinning technique and post-cross-linking is an effective method to construct polymer electrolytes with high thermal stability and steadily decent electrochemical performance, particularly useful for Lithium-ion battery applications that require high-temperature usage.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 8","pages":"1021 - 1028"},"PeriodicalIF":4.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141126273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unlocking the Potential of Poly(butylene succinate) through Incorporation of Vitrimeric Network Based on Dynamic Imine Bonds","authors":"Shan-Song Wu, Hui-Juan Lu, Yi-Dong Li, Shui-Dong Zhang, Jian-Bing Zeng","doi":"10.1007/s10118-024-3132-6","DOIUrl":"10.1007/s10118-024-3132-6","url":null,"abstract":"<div><p>Poly(butylene succinate) (PBS) exhibits many advantages, such as renewability, biodegradability, and impressive thermal and mechanical properties, but is limited by the low melt viscosity and strength resulted from the linear structure. To address this, vitrimeric network was introduced to synthesize PBS vitrimers (PBSVs) based on dynamic imine bonds through melt polymerization of hydroxyl-terminated PBS with vanillin derived imine containing compound and hexamethylene diisocyanate using trimethylolpropane as a crosslinking monomer. PBSVs with different crosslinking degrees were synthesized through changing the content of the crosslinking monomer. The effect of crosslinking degree on the thermal, theological, mechanical properties, and stress relaxation behavior of the PBSVs was studied in detail. The results demonstrated that the melt viscosity, melt strength, and heat resistance were enhanced substantially without obvious depression in crystallizability, thermal stability, and mechanical properties through increasing crosslinking degree. In addition, the PBSVs exhibit thermal reprocessability with mechanical properties recovered by more than 90% even after processing for three times. Furthermore, PBSV with improved melt properties shows significantly improved foamability compared to commercial PBS. This research contributes to the advancement of polymer technology by successfully developing PBS vitrimers with improved properties, showcasing their potential applications in sustainable and biodegradable materials.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 10","pages":"1414 - 1424"},"PeriodicalIF":4.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141126939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cation-Dipole Interaction-Induced Coacervate Underwater Adhesives in Natural Seawater","authors":"Xu-Fei Liu, Chong-Rui Zhang, Hua-Wen Peng, Qiang Zhao","doi":"10.1007/s10118-024-3141-5","DOIUrl":"10.1007/s10118-024-3141-5","url":null,"abstract":"<div><p>Significant progress has been made in wet adhesives for low salinity water, but exploration of general ionic adhesives for natural seawater is less developed because the high salinity could weaken interfacial bonding and shields electrostatic interactions, resulting in adhesion failure. Thus, the design of adhesives for natural seawater represents challenges less resolved. Herein, a cationic polyelectrolyte (PECHIA) containing imidazolacetonitrile unit was explored to prepare adhesives enabled by natural seawater. By combining the ion shielding effect with the “cation-dipole” interactions between PECHIA chains, aqueous solution of the PECHIA underwent coacervation and self-crosslinking in natural seawater, allowing for underwater adhesion to various substrates in seawater. The instantaneous lap-shear and tensile adhesion strengths are 47 and 119 kPa, respectively, while the cured adhesive shows ∼739 kPa tensile adhesion in natural seawater. The design of PECHIA enables wet adhesives viable for applications in the diversified scenarios of natural seawater.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 7","pages":"984 - 991"},"PeriodicalIF":4.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141126170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation and Rheological Characterization of Long Chain Branching Polyglycolide","authors":"Wei-Lin Liu, Ming-Fu Lyu, Heng-Yuan Zhang, Jian-Ye Liu, Shi-Jun Zhang","doi":"10.1007/s10118-024-3118-4","DOIUrl":"10.1007/s10118-024-3118-4","url":null,"abstract":"<div><p>The long chain branching (LCB) polyglycolide (PGA) was successfully prepared by the successive reactions of the terminal hydroxyl groups of PGA with triglycidyl isocyanurate (TGIC) and pyromellitic dianhydride (PMDA). The influence of LCB produced by functional group reaction on rheological and crystallization behavior was studied and discussed through linear rheology, uniaxial elongation and DSC (differential scanning calorimetry). The much higher viscosity and the more notable strain hardening behavior of modified PGA indicates the LCB with high degree of entanglements are created. The melt strength of PGA is finally improved greatly and can make sure that the supercritical CO<sub>2</sub> foaming can be carried out successfully.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 8","pages":"1177 - 1184"},"PeriodicalIF":4.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141126393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}