Neural PlasticityPub Date : 2015-01-01Epub Date: 2015-08-04DOI: 10.1155/2015/902802
Jessica N Holland, Adam T Schmidt
{"title":"Static and Dynamic Factors Promoting Resilience following Traumatic Brain Injury: A Brief Review.","authors":"Jessica N Holland, Adam T Schmidt","doi":"10.1155/2015/902802","DOIUrl":"10.1155/2015/902802","url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is the greatest contributing cause of death and disability among children and young adults in the United States. The current paper briefly summarizes contemporary literature on factors that can improve outcomes (i.e., promote resilience) for children and adults following TBI. For the purpose of this paper, the authors divided these factors into static or unmodifiable factors (i.e., age, sex, intellectual abilities/education, and preinjury psychiatric history) and dynamic or modifiable factors (i.e., socioeconomic status, family functioning/social support, nutrition, and exercise). Drawing on human and animal studies, the research reviewed indicated that these various factors can improve outcomes in multiple domains of functioning (e.g., cognition, emotion regulation, health and wellness, behavior, etc.) following a TBI. However, many of these factors have not been studied across populations, have been limited to preclinical investigations, have been limited in their scope or follow-up, or have not involved a thorough evaluation of outcomes. Thus, although promising, continued research is vital in the area of factors promoting resilience following TBI in children and adults. </p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2015 ","pages":"902802"},"PeriodicalIF":3.1,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4539485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33982805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2015-01-01Epub Date: 2015-08-26DOI: 10.1155/2015/687175
Emiliano Merlo, Pedro Bekinschtein, Sietse Jonkman, Jorge H Medina
{"title":"Molecular Mechanisms of Memory Consolidation, Reconsolidation, and Persistence.","authors":"Emiliano Merlo, Pedro Bekinschtein, Sietse Jonkman, Jorge H Medina","doi":"10.1155/2015/687175","DOIUrl":"https://doi.org/10.1155/2015/687175","url":null,"abstract":"Fil: Merlo, Emiliano. University of Cambridge; Reino Unido. Consejo Nacional de Investigaciones Cientificas y Tecnicas; Argentina","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2015 ","pages":"687175"},"PeriodicalIF":3.1,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/687175","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34013207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2015-01-01Epub Date: 2015-08-31DOI: 10.1155/2015/535618
Natalie T Y Leung, Helena M K Tam, Leung W Chu, Timothy C Y Kwok, Felix Chan, Linda C W Lam, Jean Woo, Tatia M C Lee
{"title":"Neural Plastic Effects of Cognitive Training on Aging Brain.","authors":"Natalie T Y Leung, Helena M K Tam, Leung W Chu, Timothy C Y Kwok, Felix Chan, Linda C W Lam, Jean Woo, Tatia M C Lee","doi":"10.1155/2015/535618","DOIUrl":"https://doi.org/10.1155/2015/535618","url":null,"abstract":"<p><p>Increasing research has evidenced that our brain retains a capacity to change in response to experience until late adulthood. This implies that cognitive training can possibly ameliorate age-associated cognitive decline by inducing training-specific neural plastic changes at both neural and behavioral levels. This longitudinal study examined the behavioral effects of a systematic thirteen-week cognitive training program on attention and working memory of older adults who were at risk of cognitive decline. These older adults were randomly assigned to the Cognitive Training Group (n = 109) and the Active Control Group (n = 100). Findings clearly indicated that training induced improvement in auditory and visual-spatial attention and working memory. The training effect was specific to the experience provided because no significant difference in verbal and visual-spatial memory between the two groups was observed. This pattern of findings is consistent with the prediction and the principle of experience-dependent neuroplasticity. Findings of our study provided further support to the notion that the neural plastic potential continues until older age. The baseline cognitive status did not correlate with pre- versus posttraining changes to any cognitive variables studied, suggesting that the initial cognitive status may not limit the neuroplastic potential of the brain at an old age. </p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2015 ","pages":"535618"},"PeriodicalIF":3.1,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/535618","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34045481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2015-01-01Epub Date: 2015-08-24DOI: 10.1155/2015/847136
Jena B Hales, Amber C Ocampo, Nicola J Broadbent, Robert E Clark
{"title":"Hippocampal Infusion of Zeta Inhibitory Peptide Impairs Recent, but Not Remote, Recognition Memory in Rats.","authors":"Jena B Hales, Amber C Ocampo, Nicola J Broadbent, Robert E Clark","doi":"10.1155/2015/847136","DOIUrl":"https://doi.org/10.1155/2015/847136","url":null,"abstract":"<p><p>Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP) into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP). However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3-7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF). In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion. </p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2015 ","pages":"847136"},"PeriodicalIF":3.1,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/847136","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34182606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2015-01-01Epub Date: 2015-05-06DOI: 10.1155/2015/481574
Luca Prosperini, Maria Cristina Piattella, Costanza Giannì, Patrizia Pantano
{"title":"Functional and Structural Brain Plasticity Enhanced by Motor and Cognitive Rehabilitation in Multiple Sclerosis.","authors":"Luca Prosperini, Maria Cristina Piattella, Costanza Giannì, Patrizia Pantano","doi":"10.1155/2015/481574","DOIUrl":"10.1155/2015/481574","url":null,"abstract":"<p><p>Rehabilitation is recognized to be important in ameliorating motor and cognitive functions, reducing disease burden, and improving quality of life in patients with multiple sclerosis (MS). In this systematic review, we summarize the existing evidences that motor and cognitive rehabilitation may enhance functional and structural brain plasticity in patients with MS, as assessed by means of the most advanced neuroimaging techniques, including diffusion tensor imaging and task-related and resting-state functional magnetic resonance imaging (MRI). In most cases, the rehabilitation program was based on computer-assisted/video game exercises performed in either an outpatient or home setting. Despite their heterogeneity, all the included studies describe changes in white matter microarchitecture, in task-related activation, and/or in functional connectivity following both task-oriented and selective training. When explored, relevant correlation between improved function and MRI-detected brain changes was often found, supporting the hypothesis that training-induced brain plasticity is specifically linked to the trained domain. Small sample sizes, lack of randomization and/or an active control group, as well as missed relationship between MRI-detected changes and clinical performance, are the major drawbacks of the selected studies. Knowledge gaps in this field of research are also discussed to provide a framework for future investigations. </p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2015 ","pages":"481574"},"PeriodicalIF":3.1,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34197199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2015-01-01Epub Date: 2015-05-14DOI: 10.1155/2015/671705
Achille Pasqualotto, Begüm Kobanbay, Michael J Proulx
{"title":"Neural Stimulation Has a Long-Term Effect on Foreign Vocabulary Acquisition.","authors":"Achille Pasqualotto, Begüm Kobanbay, Michael J Proulx","doi":"10.1155/2015/671705","DOIUrl":"https://doi.org/10.1155/2015/671705","url":null,"abstract":"<p><p>Acquisition of a foreign language is a challenging task that is becoming increasingly more important in the world nowadays. There is evidence suggesting that the frontal and temporal cortices are involved in language processing and comprehension, but it is still unknown whether foreign language acquisition recruits additional cortical areas in a causal manner. For the first time, we used transcranial random noise stimulation on the frontal and parietal brain areas, in order to compare its effect on the acquisition of unknown foreign words and a sham, or placebo, condition was also included. This type of noninvasive neural stimulation enhances cortical activity by boosting the spontaneous activity of neurons. Foreign vocabulary acquisition was tested both immediately and seven days after the stimulation. We found that stimulation on the posterior parietal, but not the dorsolateral prefrontal cortex or sham stimulation, significantly improved the memory performance in the long term. These results suggest that the posterior parietal cortex is directly involved in acquisition of foreign vocabulary, thus extending the \"linguistic network\" to this area. </p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2015 ","pages":"671705"},"PeriodicalIF":3.1,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/671705","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34205685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CREB Regulates Experience-Dependent Spine Formation and Enlargement in Mouse Barrel Cortex.","authors":"Annabella Pignataro, Antonella Borreca, Martine Ammassari-Teule, Silvia Middei","doi":"10.1155/2015/651469","DOIUrl":"https://doi.org/10.1155/2015/651469","url":null,"abstract":"<p><p>Experience modifies synaptic connectivity through processes that involve dendritic spine rearrangements in neuronal circuits. Although cAMP response element binding protein (CREB) has a key function in spines changes, its role in activity-dependent rearrangements in brain regions of rodents interacting with the surrounding environment has received little attention so far. Here we studied the effects of vibrissae trimming, a widely used model of sensory deprivation-induced cortical plasticity, on processes associated with dendritic spine rearrangements in the barrel cortex of a transgenic mouse model of CREB downregulation (mCREB mice). We found that sensory deprivation through prolonged whisker trimming leads to an increased number of thin spines in the layer V of related barrel cortex (Contra) in wild type but not mCREB mice. In the barrel field controlling spared whiskers (Ipsi), the same trimming protocol results in a CREB-dependent enlargement of dendritic spines. Last, we demonstrated that CREB regulates structural rearrangements of synapses that associate with dynamic changes of dendritic spines. Our findings suggest that CREB plays a key role in dendritic spine dynamics and synaptic circuits rearrangements that account for new brain connectivity in response to changes in the environment. </p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2015 ","pages":"651469"},"PeriodicalIF":3.1,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/651469","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34202834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2015-01-01Epub Date: 2015-05-27DOI: 10.1155/2015/591563
Bartłomiej Pochwat, Gabriel Nowak, Bernadeta Szewczyk
{"title":"Relationship between Zinc (Zn (2+) ) and Glutamate Receptors in the Processes Underlying Neurodegeneration.","authors":"Bartłomiej Pochwat, Gabriel Nowak, Bernadeta Szewczyk","doi":"10.1155/2015/591563","DOIUrl":"https://doi.org/10.1155/2015/591563","url":null,"abstract":"<p><p>The results from numerous studies have shown that an imbalance between particular neurotransmitters may lead to brain circuit dysfunction and development of many pathological states. The significance of glutamate pathways for the functioning of the nervous system is equivocal. On the one hand, glutamate transmission is necessary for neuroplasticity, synaptogenesis, or cell survival, but on the other hand an excessive and long-lasting increased level of glutamate in the synapse may lead to cell death. Under clinical conditions, hyperactivity of the glutamate system is associated with ischemia, epilepsy, and neurodegenerative diseases such as Alzheimer's, Huntington's, and many others. The achievement of glutamate activity in the physiological range requires efficient control by endogenous regulatory factors. Due to the fact that the free pool of ion Zn(2+) is a cotransmitter in some glutamate neurons; the role of this element in the pathophysiology of a neurodegenerative diseases has been intensively studied. There is a lot of evidence for Zn(2+) dyshomeostasis and glutamate system abnormalities in ischemic and neurodegenerative disorders. However, the precise interaction between Zn(2+) regulative function and the glutamate system is still not fully understood. This review describes the relationship between Zn(2+) and glutamate dependent signaling pathways under selected pathological central nervous system (CNS) conditions. </p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2015 ","pages":"591563"},"PeriodicalIF":3.1,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/591563","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33952338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2015-01-01Epub Date: 2015-06-11DOI: 10.1155/2015/512156
David Parker
{"title":"Synaptic Variability Introduces State-Dependent Modulation of Excitatory Spinal Cord Synapses.","authors":"David Parker","doi":"10.1155/2015/512156","DOIUrl":"https://doi.org/10.1155/2015/512156","url":null,"abstract":"<p><p>The relevance of neuronal and synaptic variability remains unclear. Cellular and synaptic plasticity and neuromodulation are also variable. This could reflect state-dependent effects caused by the variable initial cellular or synaptic properties or direct variability in plasticity-inducing mechanisms. This study has examined state-dependent influences on synaptic plasticity at connections between excitatory interneurons (EIN) and motor neurons in the lamprey spinal cord. State-dependent effects were examined by correlating initial synaptic properties with the substance P-mediated plasticity of low frequency-evoked EPSPs and the reduction of the EPSP depression over spike trains (metaplasticity). The low frequency EPSP potentiation reflected an interaction between the potentiation of NMDA responses and the release probability. The release probability introduced a variable state-dependent subtractive influence on the postsynaptic NMDA-dependent potentiation. The metaplasticity was also state-dependent: it was greater at connections with smaller available vesicle pools and high initial release probabilities. This was supported by the significant reduction in the number of connections showing metaplasticity when the release probability was reduced by high Mg(2+) Ringer. Initial synaptic properties thus introduce state-dependent influences that affect the potential for plasticity. Understanding these conditions will be as important as understanding the subsequent changes. </p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2015 ","pages":"512156"},"PeriodicalIF":3.1,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/512156","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34283008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2015-01-01Epub Date: 2015-06-14DOI: 10.1155/2015/576978
Rodrigo Machado-Vieira, Benicio N Frey, Ana C Andreazza, João Quevedo
{"title":"Translational Research in Bipolar Disorders.","authors":"Rodrigo Machado-Vieira, Benicio N Frey, Ana C Andreazza, João Quevedo","doi":"10.1155/2015/576978","DOIUrl":"https://doi.org/10.1155/2015/576978","url":null,"abstract":"Translational research is at the vanguard of contemporary psychiatry. Its bidirectional continuum (from bench to bedside and vice versa) has become a primary target in the search of personalized treatments in psychiatry. Although the term “translational” has various definitions, its common ground has focused on a better understanding of the pathophysiology of psychiatric disorders as well as on the identification of new diagnostic tests and development of new, improved treatments. In psychiatry, these aims seem more challenging than in other medical areas due to the complexity of brain mechanisms and behaviors. \u0000 \u0000Several other areas in medicine (e.g., oncology and endocrinology) have successfully decreased the gap between initial drug discovery steps and the subsequent approval of successful therapies for human diseases using translational approaches. In mental health, the use of tools and technologies that are able to positively impact health parameters in psychiatric conditions has been put forward as the ultimate objective of translational neuroscience research, which may tailor clinical practice [1]. Even though several advances have been obtained, this is a key but complex step to pursue, since psychiatric disorders have potential heterogeneous symptomatology, cognitive functioning, and comorbidities as well as having a wide range of genetic and environmental risk factors [2]. Furthermore, recent genome-wide association studies have identified potential candidate genes, but lack of replication by subsequent larger studies and low power have been major limitations in this field. \u0000 \u0000One example that fits well in this paradigm is bipolar disorder (BD). This is a major mental illness with high prevalence (especially when considering its spectrum), which still has low recovery rates and high rates of treatment-resistant cases, with consequent high morbidity and mortality rates. Despite this major public health issue, existing pharmacological treatments for BD are mostly modifications of older versions and have not been demonstrated to be superior to agents from the same class in terms of efficacy and effectiveness. Except for lithium, all first- and second-line treatments for BD phases and maintenance were first developed and approved for other disorders (e.g., anticonvulsants and atypical antipsychotics). It is noteworthy that the use of lithium has been progressively declining despite the strong evidence base in favor of its use [3, 4]. \u0000 \u0000Another degree of complexity is based on its pathophysiology. This involves dysfunctions at multiple levels and systems with a convergent impact at subcellular downstream cascades that directly regulate cellular resilience and neural plasticity. Some of these molecular targets include central and peripheral stress pathways, inflammation, intracellular signaling cascades, and organelles (mitochondria and endoplasmic reticulum) dysfunction [5]. In this context, some of these newly identified potential treatmen","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2015 ","pages":"576978"},"PeriodicalIF":3.1,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/576978","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34292618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}