{"title":"Synaptic Variability Introduces State-Dependent Modulation of Excitatory Spinal Cord Synapses.","authors":"David Parker","doi":"10.1155/2015/512156","DOIUrl":null,"url":null,"abstract":"<p><p>The relevance of neuronal and synaptic variability remains unclear. Cellular and synaptic plasticity and neuromodulation are also variable. This could reflect state-dependent effects caused by the variable initial cellular or synaptic properties or direct variability in plasticity-inducing mechanisms. This study has examined state-dependent influences on synaptic plasticity at connections between excitatory interneurons (EIN) and motor neurons in the lamprey spinal cord. State-dependent effects were examined by correlating initial synaptic properties with the substance P-mediated plasticity of low frequency-evoked EPSPs and the reduction of the EPSP depression over spike trains (metaplasticity). The low frequency EPSP potentiation reflected an interaction between the potentiation of NMDA responses and the release probability. The release probability introduced a variable state-dependent subtractive influence on the postsynaptic NMDA-dependent potentiation. The metaplasticity was also state-dependent: it was greater at connections with smaller available vesicle pools and high initial release probabilities. This was supported by the significant reduction in the number of connections showing metaplasticity when the release probability was reduced by high Mg(2+) Ringer. Initial synaptic properties thus introduce state-dependent influences that affect the potential for plasticity. Understanding these conditions will be as important as understanding the subsequent changes. </p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2015 ","pages":"512156"},"PeriodicalIF":3.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/512156","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2015/512156","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/6/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 11
Abstract
The relevance of neuronal and synaptic variability remains unclear. Cellular and synaptic plasticity and neuromodulation are also variable. This could reflect state-dependent effects caused by the variable initial cellular or synaptic properties or direct variability in plasticity-inducing mechanisms. This study has examined state-dependent influences on synaptic plasticity at connections between excitatory interneurons (EIN) and motor neurons in the lamprey spinal cord. State-dependent effects were examined by correlating initial synaptic properties with the substance P-mediated plasticity of low frequency-evoked EPSPs and the reduction of the EPSP depression over spike trains (metaplasticity). The low frequency EPSP potentiation reflected an interaction between the potentiation of NMDA responses and the release probability. The release probability introduced a variable state-dependent subtractive influence on the postsynaptic NMDA-dependent potentiation. The metaplasticity was also state-dependent: it was greater at connections with smaller available vesicle pools and high initial release probabilities. This was supported by the significant reduction in the number of connections showing metaplasticity when the release probability was reduced by high Mg(2+) Ringer. Initial synaptic properties thus introduce state-dependent influences that affect the potential for plasticity. Understanding these conditions will be as important as understanding the subsequent changes.
期刊介绍:
Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.