Topology and its Applications最新文献

筛选
英文 中文
Neighborhood system and categorical properties of quasitopological vector spaces
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2025-02-18 DOI: 10.1016/j.topol.2025.109281
Zhongqiang Yang , Yajing Fang , Qiunan Zheng
{"title":"Neighborhood system and categorical properties of quasitopological vector spaces","authors":"Zhongqiang Yang ,&nbsp;Yajing Fang ,&nbsp;Qiunan Zheng","doi":"10.1016/j.topol.2025.109281","DOIUrl":"10.1016/j.topol.2025.109281","url":null,"abstract":"<div><div>With the background of diffeological vector spaces endowed with the D-topology, in the paper (Z. Yang and Z. Hu, 2024 <span><span>[14]</span></span>), the authors defined the concept of quasitopological vector space, which is a vector space with a topology satisfying the conditions that the vector addition is separately continuous and the scalar multiplication is continuous. Based on this, in the papers (Z. Yang and Y. Fang, 2024 <span><span>[13]</span></span>) and (Z. Yang and Q. Zheng, 2024 <span><span>[15]</span></span>), the authors continuously discussed this concept. In the present paper, we characterize the quasitopological vector space using the neighborhood system at 0, give the coproducts in the category of quasitopological vector spaces, and the free quasitopological vector space over any topological space.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"365 ","pages":"Article 109281"},"PeriodicalIF":0.6,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalizing β- and λ-maps
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2025-02-18 DOI: 10.1016/j.topol.2025.109282
Ana Belén Avilez
{"title":"Generalizing β- and λ-maps","authors":"Ana Belén Avilez","doi":"10.1016/j.topol.2025.109282","DOIUrl":"10.1016/j.topol.2025.109282","url":null,"abstract":"<div><div>We generalize the notions of <em>β</em>- and <em>λ</em>-maps in terms of selections of sublocales, obtaining different classes of localic maps. These new classes of maps are used to characterize almost normal, extremally disconnected, <em>F</em>- and <em>Oz</em>-locales, among other types of locales, in a manner akin to the characterization of normal locales via <em>β</em>-maps. As a byproduct we obtain a characterization of localic maps that preserve the completely below relation (that is, the right adjoints of assertive frame homomorphisms).</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"365 ","pages":"Article 109282"},"PeriodicalIF":0.6,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mod-2 cohomology groups of low-dimensional unordered flag manifolds and Auerbach bases
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2025-02-17 DOI: 10.1016/j.topol.2025.109279
Lorenzo Guerra, Santanil Jana, Arun Maiti
{"title":"The mod-2 cohomology groups of low-dimensional unordered flag manifolds and Auerbach bases","authors":"Lorenzo Guerra,&nbsp;Santanil Jana,&nbsp;Arun Maiti","doi":"10.1016/j.topol.2025.109279","DOIUrl":"10.1016/j.topol.2025.109279","url":null,"abstract":"<div><div>Unordered flag manifolds are the manifolds of unordered <em>n</em>-tuple of mutually orthogonal lines in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In this paper, we develop some basic tools to compute the mod-2 cohomology groups of these spaces and apply them for explicit computation for small <em>n</em>. We show that this computation improves the known estimate of the number of Auerbach bases of normed linear spaces of small dimensions.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"365 ","pages":"Article 109279"},"PeriodicalIF":0.6,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143487492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Almost complex structures on sphere bundles
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2025-02-17 DOI: 10.1016/j.topol.2025.109278
G.V. Ambika, B. Subhash
{"title":"Almost complex structures on sphere bundles","authors":"G.V. Ambika,&nbsp;B. Subhash","doi":"10.1016/j.topol.2025.109278","DOIUrl":"10.1016/j.topol.2025.109278","url":null,"abstract":"<div><div>In this article, we study the existence of almost complex structures on manifolds that arise as total space of sphere bundles over complex projective spaces and over closed, simply connected 4-manifolds.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"365 ","pages":"Article 109278"},"PeriodicalIF":0.6,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetric 1-cycles in the deleted product of a graph
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2025-02-15 DOI: 10.1016/j.topol.2025.109277
Dzhenzher Ekaterina
{"title":"Symmetric 1-cycles in the deleted product of a graph","authors":"Dzhenzher Ekaterina","doi":"10.1016/j.topol.2025.109277","DOIUrl":"10.1016/j.topol.2025.109277","url":null,"abstract":"<div><div>For a graph <em>K</em>, the deleted product <span><math><mover><mrow><mi>K</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>:</mo><mo>=</mo><mi>K</mi><mo>×</mo><mi>K</mi><mo>∖</mo><mi>diag</mi><mspace></mspace><mi>K</mi></math></span> is the complement to the diagonal diag <em>K</em> in the square <span><math><mi>K</mi><mo>×</mo><mi>K</mi></math></span> of the graph. We describe some 1-cycles generating all symmetric 1-cycles modulo 2 in <span><math><mover><mrow><mi>K</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>. The generators are boundaries (of products of disjoint edges in <em>K</em>), off-diagonal cycles (corresponding to the deleted products of simple cycles in <em>K</em>), and triodic cycles (i.e. the deleted products of triods in <em>K</em>). This description is rephrased as a description of generators of the one-dimensional homology group of <span><math><mover><mrow><mi>K</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> with <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-coefficients.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"365 ","pages":"Article 109277"},"PeriodicalIF":0.6,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relative polar multiplicities and the real link
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2025-02-15 DOI: 10.1016/j.topol.2025.109276
David B. Massey
{"title":"Relative polar multiplicities and the real link","authors":"David B. Massey","doi":"10.1016/j.topol.2025.109276","DOIUrl":"10.1016/j.topol.2025.109276","url":null,"abstract":"<div><div>For a hypersurface defined by a complex analytic function, we obtain a chain complex of free abelian groups, with ranks given in terms of relative polar multiplicities, which has cohomology isomorphic to the reduced cohomology of the real link. This leads to Morse-type inequalities between the Betti numbers of the real link of the hypersurface and the relative polar multiplicities of the function.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"365 ","pages":"Article 109276"},"PeriodicalIF":0.6,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the classifying maps of principal PUn-bundles
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2025-02-11 DOI: 10.1016/j.topol.2025.109274
Wen Shen
{"title":"On the classifying maps of principal PUn-bundles","authors":"Wen Shen","doi":"10.1016/j.topol.2025.109274","DOIUrl":"10.1016/j.topol.2025.109274","url":null,"abstract":"<div><div>This paper presents the characteristics of homotopy classes of <span><math><mo>[</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>BPU</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> and <span><math><mo>[</mo><mi>X</mi><mo>,</mo><msub><mrow><mi>B</mi><mi>Γ</mi><mi>SU</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span> for a certain CW complex <em>X</em>.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"363 ","pages":"Article 109274"},"PeriodicalIF":0.6,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143394455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetric monoidal categories of conveniently-constructible Banach bundles
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2025-02-07 DOI: 10.1016/j.topol.2025.109273
Alexandru Chirvasitu
{"title":"Symmetric monoidal categories of conveniently-constructible Banach bundles","authors":"Alexandru Chirvasitu","doi":"10.1016/j.topol.2025.109273","DOIUrl":"10.1016/j.topol.2025.109273","url":null,"abstract":"<div><div>We show that a continuously-normed Banach bundle <span><math><mi>E</mi></math></span> over a compact Hausdorff space <em>X</em> whose space of sections is algebraically finitely-generated (f.g.) over <span><math><mi>C</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is locally trivial (and hence the section space is projective f.g over <span><math><mi>C</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>); this answers a question of I. Gogić. As a preliminary we also provide sufficient conditions for a quotient bundle to be continuous phrased in terms of the Vietoris continuity of the unit-ball maps attached to the bundles. Related results include (a) the fact that the category of topologically f.g. continuous Banach bundles over <em>X</em> is symmetric monoidal under the (fiber-wise-maximal) tensor product, (b) the full faithfulness of the global-section functor from topologically f.g. continuous bundles to <span><math><mi>C</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>-modules and (c) the consequent identification of the algebraically f.g. bundles as precisely the rigid objects in the aforementioned symmetric monoidal category.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"363 ","pages":"Article 109273"},"PeriodicalIF":0.6,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143394454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On sequential versions of distributional topological complexity
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2025-02-05 DOI: 10.1016/j.topol.2025.109271
Ekansh Jauhari
{"title":"On sequential versions of distributional topological complexity","authors":"Ekansh Jauhari","doi":"10.1016/j.topol.2025.109271","DOIUrl":"10.1016/j.topol.2025.109271","url":null,"abstract":"<div><div>We define a (non-decreasing) sequence <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>dTC</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></msub></math></span> of sequential versions of distributional topological complexity (<span><math><mi>dTC</mi></math></span>) of a space <em>X</em> introduced by Dranishnikov and Jauhari <span><span>[5]</span></span>. This sequence generalizes <span><math><mi>dTC</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> in the sense that <span><math><msub><mrow><mi>dTC</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>dTC</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>, and is a direct analog to the well-known sequence <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>TC</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></msub></math></span>. We show that like <span><math><msub><mrow><mi>TC</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> and <span><math><mi>dTC</mi></math></span>, the sequential versions <span><math><msub><mrow><mi>dTC</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> are also homotopy invariants. Furthermore, <span><math><msub><mrow><mi>dTC</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> relates with the distributional LS-category (<span><math><mi>dcat</mi></math></span>) of products of <em>X</em> in the same way as <span><math><msub><mrow><mi>TC</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> relates with the classical LS-category (<span><math><mi>cat</mi></math></span>) of products of <em>X</em>. On one hand, we show that in general, <span><math><msub><mrow><mi>dTC</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is a different concept than <span><math><msub><mrow><mi>TC</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> for each <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>. On the other hand, by finding sharp cohomological lower bounds to <span><math><msub><mrow><mi>dTC</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span>, we provide various examples of closed manifolds <em>X</em> for which the sequences <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>TC</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>dTC</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>}</mo></mrow><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></msub></math></span> coincide.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"363 ","pages":"Article 109271"},"PeriodicalIF":0.6,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143378592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The separating disk complex for a handlebody
IF 0.6 4区 数学
Topology and its Applications Pub Date : 2025-02-04 DOI: 10.1016/j.topol.2025.109272
Sangbum Cho , Jung Hoon Lee
{"title":"The separating disk complex for a handlebody","authors":"Sangbum Cho ,&nbsp;Jung Hoon Lee","doi":"10.1016/j.topol.2025.109272","DOIUrl":"10.1016/j.topol.2025.109272","url":null,"abstract":"<div><div>We prove that the separating disk complex for a handlebody is connected. We present two proofs, one is based on the properties of primitive curves while the other one uses the action of the handlebody group on the complex. We also show that the separating reducing sphere complex for a double handlebody is connected.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"363 ","pages":"Article 109272"},"PeriodicalIF":0.6,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信