{"title":"Gyration stability for projective planes","authors":"Sebastian Chenery , Stephen Theriault","doi":"10.1016/j.topol.2025.109420","DOIUrl":null,"url":null,"abstract":"<div><div>Gyrations are operations on manifolds that arise in geometric topology, where a manifold <em>M</em> may exhibit distinct gyrations depending on the chosen twisting. For a given <em>M</em>, we ask a natural question: do all gyrations of <em>M</em> share the same homotopy type regardless of the twisting? A manifold with this property is said to have gyration stability. Inspired by recent work by Duan, which demonstrated that the quaternionic projective plane is not gyration stable with respect to diffeomorphism, we explore this question for projective planes in general. We obtain a complete description of gyration stability for the complex, quaternionic, and octonionic projective planes up to homotopy.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"369 ","pages":"Article 109420"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125002184","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gyrations are operations on manifolds that arise in geometric topology, where a manifold M may exhibit distinct gyrations depending on the chosen twisting. For a given M, we ask a natural question: do all gyrations of M share the same homotopy type regardless of the twisting? A manifold with this property is said to have gyration stability. Inspired by recent work by Duan, which demonstrated that the quaternionic projective plane is not gyration stable with respect to diffeomorphism, we explore this question for projective planes in general. We obtain a complete description of gyration stability for the complex, quaternionic, and octonionic projective planes up to homotopy.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.