Jose Ordonez-Miranda, Masahiro Nomura, Sebastian Volz
{"title":"Focusing surface phonon-polaritons for tunable thermal radiation","authors":"Jose Ordonez-Miranda, Masahiro Nomura, Sebastian Volz","doi":"10.1186/s11671-025-04191-0","DOIUrl":"10.1186/s11671-025-04191-0","url":null,"abstract":"<div><p>We demonstrate unprecedented control and enhancement of thermal radiation using subwavelength conical membranes of silicon nitride. Based on fluctuational electrodynamics, we find that the focusing of surface phonon-polaritons along these membranes enhances their far-field thermal conductance by three orders of magnitude over the blackbody limit. Our calculations reveal a non-monotonic dependence of the thermal conductance on membrane geometry, with a characteristic radiation plateau emerging at small front widths due to competing effects of the polariton focusing and radiative area. The obtained results thus introduce the conical geometry as a powerful degree of freedom for tailoring thermal radiation, with potential implications for energy harvesting and thermal management at the nanoscale.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757816/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hari Prasath Nagaiah, Malik Basha Samsudeen, Akshaya Rani Augustus, Karutha Pandian Shunmugiah
{"title":"In vitro evaluation of silver-zinc oxide-eugenol nanocomposite for enhanced antimicrobial and wound healing applications in diabetic conditions","authors":"Hari Prasath Nagaiah, Malik Basha Samsudeen, Akshaya Rani Augustus, Karutha Pandian Shunmugiah","doi":"10.1186/s11671-025-04183-0","DOIUrl":"10.1186/s11671-025-04183-0","url":null,"abstract":"<div><p>Diabetic wounds with chronic infections present a significant challenge, exacerbated by the growing issue of antimicrobial resistance, which often leads to delayed healing and increased morbidity. This study introduces a novel silver-zinc oxide-eugenol (Ag+ZnO+EU) nanocomposite, specifically designed to enhance antimicrobial activity and promote wound healing. The nanocomposite was thoroughly characterized using advanced analytical techniques, confirming its nanoscale structure, stability and chemical composition. The Ag+ZnO+EU nanocomposite demonstrated potent antimicrobial efficacy against a range of wound associated pathogens, including standard and clinical isolates of <i>Staphylococcus aureus</i>, <i>Pseudomonas aeruginosa</i> and <i>Candida albicans</i>. Minimum inhibitory concentrations of Ag+ZnO+EU for standard and clinical isolates were significantly lower than those of the individual components, highlighting the synergistic effect of the nanocomposite. Time-kill assays revealed rapid microbial eradication, achieving complete sterility within 240-min. Importantly, the nanocomposite effectively eliminated persister-like cells, which are typically resistant to conventional treatments, suggesting a potential solution for persistent infections. In vitro scratch assays using human keratinocyte cells demonstrated that the Ag+ZnO+EU nanocomposite significantly accelerated wound closure, with near-complete healing observed within 24-h, indicating enhanced cell migration and tissue regeneration. Additionally, the nanocomposite showed potential antidiabetic effects by increasing glucose uptake up to 97.21% in an in vitro assay using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose, a fluorescent glucose analog, suggesting potential applications beyond wound healing. These findings highlight the Ag+ZnO+EU nanocomposite as a promising candidate for addressing both antimicrobial resistance and impaired wound healing in diabetic contexts.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correlation of precisely fabricated geometric characteristics of DNA-origami nanostructures with their cellular entry in human lens epithelial cells","authors":"Yexuan Guo, Tianze Xiong, Hong Yan, Rui Xue Zhang","doi":"10.1186/s11671-025-04188-9","DOIUrl":"10.1186/s11671-025-04188-9","url":null,"abstract":"<div><p>Human lens epithelial cells (<i>h</i>LECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to <i>h</i>LECs, especially to sub-cellular organelles (e.g., mitochondrion and nucleus), is a key step in engineering cells for cell- and gene- based therapies. Despite a broad variety of nano- and microparticles can enter cells, their spatial characteristics relevant to cellular uptake and localization remains elusive. To investigate cellular internalization of nanostructures in <i>h</i>LECs, herein, DNA nanotechnology was exploited to precisely fabricate four distinct, mass-controlled DNA-origami nanostructures (DONs) through computer-aided design. Ensembled DONs included the rods, ring, triangle, and octahedron with defined geometric parameters of accessible surface area, effective volume, compactness, aspect ratio, size and vertex number. Atomic force microscopy and agarose gel electrophoresis showed that four DONs self-assembled within 3.5h with up to 59% yield and exhibited structural intactness in cell culture medium for 4 h. Flow cytometry analysis of four Cy5-labelled DONs in <i>h</i>LECs HLE-B3 found time-dependent cellular uptake over 2 h, among which the octahedron and triangle had higher cellular accumulation than the rod and ring. More importantly, the vertex number among other geometric parameters was positively correlated with cellular entry. Confocal images further revealed that four DONs had preferential localization at mitochondria to nucleus at 2 h in HLE-B3 cells, and the degree of their biodistribution varied among DONs as evidenced by Manders’ correlation coefficient. This study demonstrates the DONs dependent cellular uptake and intracellular compartment localization in <i>h</i>LECs, heralding the future design of structure-modulating delivery of nanomedicine for ocular therapy.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04188-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sílvio Terra Stefanello, Caren Rigon Mizdal, Aline Franzen da Silva, Luca Matteo Todesca, Félix Alexandre Antunes Soares, Victor Shahin
{"title":"Synergistic activity of Pitstop-2 and 1,6-hexanediol in aggressive human lung cancer cells","authors":"Sílvio Terra Stefanello, Caren Rigon Mizdal, Aline Franzen da Silva, Luca Matteo Todesca, Félix Alexandre Antunes Soares, Victor Shahin","doi":"10.1186/s11671-025-04184-z","DOIUrl":"10.1186/s11671-025-04184-z","url":null,"abstract":"<div><p>Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity. Besides, both compounds interfere with the integrity of nuclear pore complexes, the gatekeepers for all nucleocytoplasmic transport. Herein, we investigate the possible synergistic effects of both compounds on lowly, highly metastatic, and erlotinib-resistant non-small cell lung cancer. We observe a synergistic cytotoxic effect on erlotinib-resistant cells. Moreover, motility assays show that the compounds combination significantly impedes the motility of all cells. Drug safety and tolerability assessments were validated using the in vivo model organism <i>Caenorhabditis elegans</i>, where fairly high doses showed negligible impact on survival, development, or behavioral parameters. Our findings propose that the 1,6-HD and Pitstop-2 combination may usher in the design of potent strategies for treating advanced lung cancer.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04184-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nandita Suresh, Nebu George Thomas, Matti Mauramo, Tuomas Waltimo, Timo Sorsa, Sukumaran Anil
{"title":"Phytonanoparticles as novel drug carriers for enhanced osteogenesis and osseointegration","authors":"Nandita Suresh, Nebu George Thomas, Matti Mauramo, Tuomas Waltimo, Timo Sorsa, Sukumaran Anil","doi":"10.1186/s11671-024-04164-9","DOIUrl":"10.1186/s11671-024-04164-9","url":null,"abstract":"<div><p>Phytonanoparticles have emerged as a promising class of biomaterials for enhancing bone regeneration and osseointegration, offering unique advantages in biocompatibility, multifunctionality, and sustainability. This comprehensive review explores the synthesis, characterization, and applications of phytonanoparticles in bone tissue engineering. The green synthesis approach, utilizing plant extracts as reducing and stabilizing agents, yields nanoparticles with intrinsic bioactive properties that can synergistically promote osteogenesis. We examine the mechanisms by which phytonanoparticles, particularly those derived from gold, silver, and zinc oxide, influence key molecular pathways in osteogenesis, including RUNX2 and Osterix signaling. The review discusses advanced strategies in phyto-nanoparticle design, such as surface functionalization and stimuli-responsive release mechanisms, which enhance their efficacy in bone regeneration applications. Preclinical studies demonstrating improved osteoblast proliferation, differentiation, and mineralization are critically analyzed, along with emerging clinical data. Despite promising results, scalability, standardization, and regulatory approval challenges persist. The review also addresses the economic and environmental implications of phyto-nanoparticle production. Looking ahead, we identify key research directions, including developing personalized therapies, combination approaches with stem cells or gene delivery, and long-term safety assessments. By harnessing the power of plant-derived nanomaterials, phytonanoparticles represent an innovative approach to addressing the complex challenges of bone regeneration, with potential applications spanning dental, orthopedic, and maxillofacial surgery.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04164-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of chitin grafting: thermal, antioxidant and antitumor properties","authors":"Nevin Çankaya, Mehmet Mürşit Temüz, Burak Can","doi":"10.1186/s11671-025-04185-y","DOIUrl":"10.1186/s11671-025-04185-y","url":null,"abstract":"<div><p>In this study, firstly chitin was reacted with chloracetyl chloride to synthesize the macroinitiator chitinchloroacetate (Ch.ClAc). Then, graft copolymers of methacrylamide (MAM), diacetone acrylamide (DAAM), N-(4-nitrophenyl)acrylamide (NPA), and 2-hydroxyethyl methacrylate (HEMA) monomers were synthesized by atom transfer radical polymerization (ATRP). All of the polymers were characterized by FTIR spectra and elemental analysis. According to the elemental analysis results, the mole percent (y) of the macro initiator was found to be 17.39%. The thermal stability of all the polymers (chitin, Ch.ClAc and its graft copolymers) was determined by thermogravimetric analysis (TGA) method and the highest thermal stability was observed in the ungrafted raw chitin. DPPH• scavenging activity and antitumor activity of all polymers were then investigated. Ch.ClAc was found to be the polymer that inhibited the proliferation of tumor cells more than chitin and graft copolymers. It was observed that the antitumor (L1210 cell lines) effect increased with increasing time and concentration in all polymers.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04185-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142985411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simona Tarantino, Annalisa Bianco, Mariafrancesca Cascione, Alessandra Carlà, Lia Fiamà, Riccardo Di Corato, Livia Giotta, Paolo Pellegrino, Anna Paola Caricato, Rosaria Rinaldi, Valeria De Matteis
{"title":"Revolutionizing radiotherapy: gold nanoparticles with polyphenol coating as novel enhancers in breast cancer cells—an in vitro study","authors":"Simona Tarantino, Annalisa Bianco, Mariafrancesca Cascione, Alessandra Carlà, Lia Fiamà, Riccardo Di Corato, Livia Giotta, Paolo Pellegrino, Anna Paola Caricato, Rosaria Rinaldi, Valeria De Matteis","doi":"10.1186/s11671-025-04186-x","DOIUrl":"10.1186/s11671-025-04186-x","url":null,"abstract":"<div><p>Breast cancer is the most common cancer among women, with over 1 million new cases and around 400,000 deaths annually worldwide. This makes it a significant and costly global health challenge. Standard treatments like chemotherapy and radiotherapy, often used after mastectomy, show varying effectiveness based on the cancer subtype. Combining these treatments can improve outcomes, though radiotherapy faces limitations such as radiation resistance and low selectivity for malignant cells. Nanotechnologies, especially metallic nanoparticles (NPs), hold promise for enhancing radiotherapy. Gold nanoparticles (AuNPs) are particularly notable due to their high atomic number, which enhances radiation damage through the photoelectric effect. Studies shown that AuNPs can act as effective radiosensitizers, improving tumor damage during radiotherapy increasing the local radiation dose delivered. Traditional AuNPs synthesis methods involve harmful chemicals and extreme conditions, posing health risks. Green synthesis methods using plant extracts offer a safer and more environmentally friendly alternative. This study investigates the synthesis of AuNPs using <i>Laurus nobilis</i> leaf extract and their potential as radiosensitizers in breast carcinoma cell lines (MCF-7). These cells were exposed to varying doses of X-ray irradiation, and the study assessed cell viability, morphological changes and DNA damage. The results showed that green-synthesized AuNPs significantly enhanced the therapeutic effects of radiotherapy at lower radiation doses, indicating their potential as a valuable addition to breast cancer treatment.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04186-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142985414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bárbara Bernardi, João Otávio Donizette Malafatti, Ailton José Moreira, Andressa Cristina de Almeida Nascimento, Juliana Bruzaca Lima, Lilian Aparecida Fiorini Vermeersch, Elaine Cristina Paris
{"title":"Antimicrobial membranes based on polycaprolactone:pectin blends reinforced with zeolite faujasite for cloxacillin-controlled release","authors":"Bárbara Bernardi, João Otávio Donizette Malafatti, Ailton José Moreira, Andressa Cristina de Almeida Nascimento, Juliana Bruzaca Lima, Lilian Aparecida Fiorini Vermeersch, Elaine Cristina Paris","doi":"10.1186/s11671-024-04161-y","DOIUrl":"10.1186/s11671-024-04161-y","url":null,"abstract":"<div><p>Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m<sup>2</sup> g<sup>−1</sup>), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h). Zeolites were incorporated into polymeric nanofibers to be a cloxacillin (CLX) carrier in wound treatment, using electrospinning as an efficient synthesis method. The fibers produced showed good mechanical resistance and the incorporation of CLX was proven by assays to inhibit the growth of <i>Staphylococcus aureus</i> bacteria. The controlled release of CLX in different pH conditions, which simulate the wound environment, was carried out for up to 229 h, achieving a released CLX concentration of up to 6.18 ± 0.02 mg L<sup>−1</sup>. These results prove that obtaining a hybrid fiber (polymer-zeolite) to incorporate drugs to be released in a controlled manner was successfully achieved. The bactericidal activity of this material shows that its use for measured applications could be an alternative to conventional methods.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04161-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Sahaya Sheela, S. Kumarganesh, Binay Kumar Pandey, Mesfin Esayas Lelisho
{"title":"Integration of silver nanostructures in wireless sensor networks for enhanced biochemical sensing","authors":"M. Sahaya Sheela, S. Kumarganesh, Binay Kumar Pandey, Mesfin Esayas Lelisho","doi":"10.1186/s11671-024-04159-6","DOIUrl":"10.1186/s11671-024-04159-6","url":null,"abstract":"<div><p>Integrating noble metal nanostructures, specifically silver nanoparticles, into sensor designs has proven to enhance sensor performance across key metrics, including response time, stability, and sensitivity. However, a critical gap remains in understanding the unique contributions of various synthesis parameters on these enhancements. This study addresses this gap by examining how factors such as temperature, growth time, and choice of capping agents influence nanostructure shape and size, optimizing sensor performance for diverse conditions. Using silver nitrate and sodium borohydride, silver seed particles were created, followed by controlled growth in a solution containing additional silver ions. The size and morphology of the resulting nanostructures were regulated to achieve optimal properties for biochemical sensing in wireless sensor networks. Results demonstrated that embedding these nanostructures in Polyvinyl Alcohol (PVA) matrices led to superior stability, maintaining 93% effectiveness over 30 days compared to 70% in Polyethylene Glycol (PEG). Performance metrics revealed significant improvements: reduced response times (1.2 ms vs. 1.5 ms at zero analyte concentration) and faster responses at higher analyte levels (0.2 ms). These outcomes confirm that higher synthesis temperatures and precise shape control contribute to larger, more stable nanostructures.The enhanced stability and responsiveness underscore the potential of noble metal nanostructures for scalable and durable sensor applications, offering a significant advancement over current methods.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04159-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos A. López, Oscar Fabelo, Carmen Abia, María T. Fernández-Diaz, José A. Alonso
{"title":"Crystal growth, structural phase transitions and optical gap evolution of FAPb(Br1-xClx)3 hybrid perovskites (FA: formamidinium ion, CH(NH2)2+)","authors":"Carlos A. López, Oscar Fabelo, Carmen Abia, María T. Fernández-Diaz, José A. Alonso","doi":"10.1186/s11671-024-04179-2","DOIUrl":"10.1186/s11671-024-04179-2","url":null,"abstract":"<div><p>Chemically tuned organic–inorganic hybrid halide perovskites based on bromide and chloride anions CH(NH<sub>2</sub>)<sub>2</sub>Pb(Br<sub>1−<i>x</i></sub>Cl<sub><i>x</i></sub>)<sub>3</sub> (CH(NH<sub>2</sub>)<sub>2</sub><sup>+</sup>: formamidinium ion, FA) have been crystallized and investigated by neutron powder diffraction (NPD), single crystal X-ray diffraction (SCXRD), scanning electron microscopy (SEM) and UV–vis spectroscopy. FAPbBr<sub>3</sub> and FAPbCl<sub>3</sub> experience successive phase transitions upon cooling, lowering the symmetry from cubic to orthorhombic phases; however, these transitions are not observed for the mixed halide phases, probably due to compositional disorder. The band-gap engineering brought about by the chemical doping of FAPb (Br<sub>1-<i>x</i></sub>Cl<sub><i>x</i></sub>)<sub>3</sub> perovskites (x = 0.0, 0.33, 0.5, 0.66 and 1.0) can be controllably tuned: the gap progressively increases with the concentration of Cl<sup>−</sup> ions from 2.17 to 2.91 eV at room temperature, presenting a nonlinear behavior. This study provides an improved understanding of the structural and optical properties of these appealing hybrid perovskites.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04179-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}