Light modulates plant-derived extracellular vesicle properties: a photosensitive-responsive nanodelivery system

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu Lu, Wenyu Zhang, Peiyuan Zeng, Yuqian He, Xiaolu Hua, Yan Liu, Jianbo Wu
{"title":"Light modulates plant-derived extracellular vesicle properties: a photosensitive-responsive nanodelivery system","authors":"Yu Lu,&nbsp;Wenyu Zhang,&nbsp;Peiyuan Zeng,&nbsp;Yuqian He,&nbsp;Xiaolu Hua,&nbsp;Yan Liu,&nbsp;Jianbo Wu","doi":"10.1186/s11671-025-04266-y","DOIUrl":null,"url":null,"abstract":"<div><p>Plant-derived extracellular vesicles (PDEVs) have emerged as innovative nanocarriers for drug delivery, offering advantages such as biocompatibility, stability, and cost-effectiveness. This study explores light-mediated strategies to optimize cargo encapsulation into PDEVs while preserving structural integrity. Leveraging the intrinsic photosensitizing properties of PDEVs, light irradiation (LED) triggered reactive oxygen species (ROS) generation, including superoxide anions and singlet oxygen, which transiently enhanced membrane permeability for controlled drug loading. Using FITC-dextran (70 kDa) as a model cargo, we optimized light-induced loading efficiency, achieving a peak (~ 80%) at 10 min of irradiation. Prolonged exposure (15 min) reduced efficiency (~ 50%), likely due to excessive ROS-induced membrane destabilization. The optimal PDEVs-to-cargo ratio (1:30) ensured maximal loading while maintaining stability over 30 days. Lipid peroxidation analysis further confirmed ROS-induced membrane modifications through malondialdehyde (MDA) accumulation. These findings demonstrate that PLDENs (Pueraria lobate-derived exosomes-like nanovesicles) function as light-responsive nanocarriers, balancing ROS-mediated permeability enhancement with structural integrity. This light-triggered strategy balances permeability modulation and structural integrity, advancing PDEVs as scalable, non-invasive platforms for precision drug delivery and photodynamic applications. </p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04266-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04266-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant-derived extracellular vesicles (PDEVs) have emerged as innovative nanocarriers for drug delivery, offering advantages such as biocompatibility, stability, and cost-effectiveness. This study explores light-mediated strategies to optimize cargo encapsulation into PDEVs while preserving structural integrity. Leveraging the intrinsic photosensitizing properties of PDEVs, light irradiation (LED) triggered reactive oxygen species (ROS) generation, including superoxide anions and singlet oxygen, which transiently enhanced membrane permeability for controlled drug loading. Using FITC-dextran (70 kDa) as a model cargo, we optimized light-induced loading efficiency, achieving a peak (~ 80%) at 10 min of irradiation. Prolonged exposure (15 min) reduced efficiency (~ 50%), likely due to excessive ROS-induced membrane destabilization. The optimal PDEVs-to-cargo ratio (1:30) ensured maximal loading while maintaining stability over 30 days. Lipid peroxidation analysis further confirmed ROS-induced membrane modifications through malondialdehyde (MDA) accumulation. These findings demonstrate that PLDENs (Pueraria lobate-derived exosomes-like nanovesicles) function as light-responsive nanocarriers, balancing ROS-mediated permeability enhancement with structural integrity. This light-triggered strategy balances permeability modulation and structural integrity, advancing PDEVs as scalable, non-invasive platforms for precision drug delivery and photodynamic applications.

光调节植物源性细胞外囊泡特性:一种光敏响应纳米递送系统
植物源性细胞外囊泡(PDEVs)已成为一种创新的纳米药物载体,具有生物相容性、稳定性和成本效益等优点。本研究探讨了光介导策略,以优化货物封装到PDEVs,同时保持结构完整性。利用PDEVs固有的光敏特性,光照射(LED)触发活性氧(ROS)的产生,包括超氧阴离子和单线态氧,从而瞬间增强膜的通透性,从而控制药物负载。以fitc -葡聚糖(70 kDa)作为模型货,我们优化了光诱导加载效率,在照射10 min时达到峰值(~ 80%)。长时间暴露(15分钟)降低了效率(~ 50%),可能是由于过量的ros引起的膜不稳定。最佳的pdev -to-cargo比(1:30)确保了最大的装载量,同时在30天内保持稳定。脂质过氧化分析进一步证实了ros通过丙二醛(MDA)积累诱导的膜修饰。这些发现表明plden(葛根衍生的外泌体样纳米囊泡)作为光响应纳米载体,平衡ros介导的通透性增强和结构完整性。这种光触发策略平衡了渗透性调节和结构完整性,使PDEVs成为可扩展的、非侵入性的精确药物输送和光动力学应用平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信