Mechanical Systems and Signal Processing最新文献

筛选
英文 中文
Modelling and analysis of chatter in the heavy-load multi-DoF plastic forming process 重载多道工序塑料成型过程中的颤振建模与分析
IF 8.4 1区 工程技术
Mechanical Systems and Signal Processing Pub Date : 2024-11-12 DOI: 10.1016/j.ymssp.2024.112106
Xinghui Han, Yi Lu, Fangyan Zheng, Lin Hua, Dahu Zhu, Xin Chen
{"title":"Modelling and analysis of chatter in the heavy-load multi-DoF plastic forming process","authors":"Xinghui Han, Yi Lu, Fangyan Zheng, Lin Hua, Dahu Zhu, Xin Chen","doi":"10.1016/j.ymssp.2024.112106","DOIUrl":"https://doi.org/10.1016/j.ymssp.2024.112106","url":null,"abstract":"Regenerative chatter is an unstable and detrimental vibration phenomenon stemming from the regenerative excitation of time-delay dynamic systems. Currently, research on regenerative chatter predominantly focuses on machining process, wherein chatter occurs when the process frequency aligns closely with the natural frequency of the tool-holder system. However, in plastic forming process conducted by heavy-load multi-DoF forming machine (MDFM), the process frequency is far smaller than the natural frequency of the tool-holder system. Despite this, chatter still occurs in the actual plastic forming process, challenging the explanatory capacity of existing chatter models developed for machining process.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"106 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Passive detection of bolt joint looseness using flow-induced ambient noise 利用流动引起的环境噪声对螺栓连接松动进行被动检测
IF 8.4 1区 工程技术
Mechanical Systems and Signal Processing Pub Date : 2024-11-12 DOI: 10.1016/j.ymssp.2024.112110
Boyu Cai, Qihang Qin, Xun Wang, Jing Lin
{"title":"Passive detection of bolt joint looseness using flow-induced ambient noise","authors":"Boyu Cai, Qihang Qin, Xun Wang, Jing Lin","doi":"10.1016/j.ymssp.2024.112110","DOIUrl":"https://doi.org/10.1016/j.ymssp.2024.112110","url":null,"abstract":"Bolt joints are commonly used in aviation structures. Bolt looseness may pose serious safety risks and its online monitoring is of great importance to structure and air safety. Active guided wave detection methods can accurately identify the tightness status of bolts. However, the excitation of active guided waves requires big and heavy equipment, such as waveform generators and power amplifiers, which are often not allowed due to the lightweight design of aircraft. It is found that random ultrasonic guided waves can be passively excited by the coupling between airflow and airframe, which carries rich structural health information and has great potential for passive online detection of aircraft structure. In this paper, the cross-correlation function between random guided waves measured by two passive receivers is computed to identify the wave propagation paths in a bolt joint structure and the wave energy along each path passing through a bolt, by which the bolt tightness is assessed. Laboratory and wind tunnel experiments show that a broadband random ultrasonic guided wave can be excited due to the interaction of airflow with an airframe structure, from which the proposed method can efficiently identify the looseness of multiple bolts.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"101 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital twins for dynamics of a train-slab track-bridge coupled system 列车-底板-轨道-桥梁耦合系统动力学数字双胞胎
IF 8.4 1区 工程技术
Mechanical Systems and Signal Processing Pub Date : 2024-11-12 DOI: 10.1016/j.ymssp.2024.112130
Hao Liang, Bao-Rui Dai, You-Lin Xu, Qi Li, Qing-Yuan Song, Yue Zheng
{"title":"Digital twins for dynamics of a train-slab track-bridge coupled system","authors":"Hao Liang, Bao-Rui Dai, You-Lin Xu, Qi Li, Qing-Yuan Song, Yue Zheng","doi":"10.1016/j.ymssp.2024.112130","DOIUrl":"https://doi.org/10.1016/j.ymssp.2024.112130","url":null,"abstract":"In consideration of significant uncertainties arising from the degradation of in-service train-slab track-bridge coupled systems and the limitation in accurately reproducing track irregularities using prescribed track spectra, this study presents a novel framework to establish a digital twin for dynamics of an in-service train-slab track-bridge coupled system to best simulate and predict its dynamic behavior and performance during its operation. The train-slab track-bridge coupled system of a railway test line is taken as a physical entity and subjected to field measurements. The design-document-based virtual entity (numerical model) of the train-slab track-bridge coupled system is then established. A model updating procedure is subsequently proposed for the virtual entity based on the dynamic characteristics identified from the physical entity, and a track irregularity spectrum recognition method is developed in terms of the measured dynamic responses and optimization algorithm, thereby leading to the digital twin establishment. The established digital twin is finally used to simulate and predict the coupled vibration of the train-slab track-bridge system and compare with the measurement results. The results demonstrate the feasibility and accuracy of the digital twin and its prediction capability.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"12 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient vibration control on coupled unit-plant structure of pumped storage power station based on MRD optimal layout 基于 MRD 优化布局的抽水蓄能电站耦合机组-厂房结构的瞬态振动控制
IF 8.4 1区 工程技术
Mechanical Systems and Signal Processing Pub Date : 2024-11-12 DOI: 10.1016/j.ymssp.2024.112111
Jinjian Zhang, Zhenyue Ma, Wenjie Xu, Xueni Wang, Kaiwen Zhang, Leike Zhang
{"title":"Transient vibration control on coupled unit-plant structure of pumped storage power station based on MRD optimal layout","authors":"Jinjian Zhang, Zhenyue Ma, Wenjie Xu, Xueni Wang, Kaiwen Zhang, Leike Zhang","doi":"10.1016/j.ymssp.2024.112111","DOIUrl":"https://doi.org/10.1016/j.ymssp.2024.112111","url":null,"abstract":"To address the recurring vibration in the integrated unit-plant structure system during the transitional phases of pumped storage power station (PSPS), the magnetorheological damper (MRD) is introduced in this paper to investigate transient vibration control within the coupled unit-plant structure (CUPS). Firstly, taking an actual PSPS as a case study, a unit regulation system model is developed based on one-dimensional transient flow theory, the method of characteristics (MOC), and the improved Suter transformation. Secondly, integrating the position function of unit shaft system, a nonlinear dynamic model of MRD is constructed, and the MRD damping force accounting for axial position parameters is derived. Additionally, on the basis of Lagrange method and finite element method, a mathematical model of unit shaft system and a finite element model for plant structure under the coupling effects of multiple vibration sources are established. Finally, the response to a sudden 10% load increase in generator condition of pumped storage unit is calculated through numerical simulation, and the effects of different damper position functions on the vibration characteristics of rotor and runner are analyzed to identify the optimal installation position for effective vibration control. The research results indicate that, optimizing the damper layout position enables the MRD to effectively reduce the vibration amplitude of rotor and runner, enhancing spectral characteristics. Furthermore, optimizing MRD positions significantly improves the vibration performance of plant structure. After the optimization of MRD positions, the vibration attenuation rate of plant structure accelerates, leading to a quicker stabilization, particularly noticeable in the generator floor. The findings of this study offer valuable engineering guidance for managing transient vibration in the integrated unit-plant system of PSPS.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"73 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vibration mitigation in a spline-shafting system via an auxiliary support: Simulation and experiment 通过辅助支撑减轻花键轴系统的振动:模拟与实验
IF 8.4 1区 工程技术
Mechanical Systems and Signal Processing Pub Date : 2024-11-09 DOI: 10.1016/j.ymssp.2024.112120
Xinxing Ma, Rihuan Yu, Hongwu Li, Jianping Jing, Zhenguo Zhang
{"title":"Vibration mitigation in a spline-shafting system via an auxiliary support: Simulation and experiment","authors":"Xinxing Ma, Rihuan Yu, Hongwu Li, Jianping Jing, Zhenguo Zhang","doi":"10.1016/j.ymssp.2024.112120","DOIUrl":"https://doi.org/10.1016/j.ymssp.2024.112120","url":null,"abstract":"Flexible rotor systems with spline joints often encounter critical resonances and sudden self-excited vibrations. This paper introduces an innovative state-switching scheme utilizing auxiliary support with a pre-loaded snubber ring to suppress these undesirable vibrations. A prototype of an auxiliary support was designed, and a coupled rotor dynamics model incorporating a nonlinear auxiliary support was developed. The study presents several numerical examples and experimental results that validate the effectiveness of the proposed method. Adjusting design parameters such as initial clearance and leaf spring stiffness demonstrated significant improvements in limiting shaft amplitude and shifting the resonance frequency to higher ranges. Additional damping from the support further aids in reducing vibrations. The auxiliary support successfully attenuated self-excited vibrations within the supercritical speed range, achieving only short-term oscillations and restricting amplitude within set limits. This novel approach offers a promising solution for suppressing both first-order resonance and self-excited vibrations in flexible rotor systems, thereby enhancing overall system performance and stability.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"33 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A compact mechanical energy harvester for multi-scenario applications in smart transportation 用于智能交通多场景应用的紧凑型机械能量收集器
IF 8.4 1区 工程技术
Mechanical Systems and Signal Processing Pub Date : 2024-11-08 DOI: 10.1016/j.ymssp.2024.112004
Jiaqin Zhang, Houfan Du, Suo Wang, Shuzhe Zhou, Wenbo Lyu, Huirong Zhang, Shengxi Zhou
{"title":"A compact mechanical energy harvester for multi-scenario applications in smart transportation","authors":"Jiaqin Zhang, Houfan Du, Suo Wang, Shuzhe Zhou, Wenbo Lyu, Huirong Zhang, Shengxi Zhou","doi":"10.1016/j.ymssp.2024.112004","DOIUrl":"https://doi.org/10.1016/j.ymssp.2024.112004","url":null,"abstract":"Harvesting mechanical energy from traffic environments is an effective way to power low-power wireless sensors. In this paper, a compact mechanical energy harvester (MEH) is designed for common traffic scenarios, converting reciprocating vertical vibrations into unidirectional rotational motion of a generator through the use of two one-way clutches integrated within bevel gears. A nonlinear coupling model is established to analyze the MEH during its engagement and disengagement phases. This paper focuses on the dynamic characteristics under different load conditions and the safety implications of integrating the MEH into railway operations. Laboratory tests are conducted to evaluate the effects of different harmonic excitations on input force, angular velocity, and output voltage, validating the dynamics model and assessing its performance. Experimental results demonstrate that the MEH can achieve an average power of 42.73 W and a peak power of 96.05 W under harmonic excitation. In simulated scenarios, the peak powers that can be obtained in the freight railway scenario and road sidewalk scenario are 44.3 W and 4.92 W, respectively. These findings demonstrate the significant potential of the proposed MEH for powering electronic devices in traffic settings.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"13 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving unsupervised long-term damage detection in an uncontrolled environment through noise-augmentation strategy 通过噪声增强策略改进失控环境中的无监督长期损坏检测
IF 8.4 1区 工程技术
Mechanical Systems and Signal Processing Pub Date : 2024-11-08 DOI: 10.1016/j.ymssp.2024.112076
Kang Yang, Chao Zhang, Hanbo Yang, Linyuan Wang, Nam H. Kim, Joel B. Harley
{"title":"Improving unsupervised long-term damage detection in an uncontrolled environment through noise-augmentation strategy","authors":"Kang Yang, Chao Zhang, Hanbo Yang, Linyuan Wang, Nam H. Kim, Joel B. Harley","doi":"10.1016/j.ymssp.2024.112076","DOIUrl":"https://doi.org/10.1016/j.ymssp.2024.112076","url":null,"abstract":"Autoencoder reconstruction-based unsupervised damage detection is widely utilized in structural health monitoring. However, such methods typically necessitate a comprehensive collection of historical guided waves as training data. Acquiring such data presents challenges, as it requires prolonged monitoring to cover various environmental and operational conditions (EOCs), making these methods less practical for real-world applications. This paper proposes an unsupervised damage detection method solely trained on the current measurements directly. To improve the performance of the unsupervised damage detection method when the training data (the current measurements ) contains a large ratio of damage-induced guided waves, two noise-augmentation strategies are designed to limit the neural network’s learning ability to recover damage-induced guided waves from their segments, improving detection performance. Additionally, we use t-SNE to visualize the impact of noise augmentation on the separation of different types of guided waves within the recovery network’s latent space. Experimental results indicate that input signals with relatively low SNR can achieve better damage detection performance, and a strategy for estimating the optimal noise intensity in input signals is provided in this paper. The effectiveness of the unsupervised this damage detection method with noise-augmentation strategy is validated by 10 regions of 80-days guided waves collected from uncontrolled and dynamic environmental conditions.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"250 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A vibration signal decomposition method for time-varying structures using empirical multi-synchroextracting decomposition 利用经验多同步提取分解法的时变结构振动信号分解方法
IF 8.4 1区 工程技术
Mechanical Systems and Signal Processing Pub Date : 2024-11-08 DOI: 10.1016/j.ymssp.2024.112107
Yu-Zu Li, Sheng-En Fang
{"title":"A vibration signal decomposition method for time-varying structures using empirical multi-synchroextracting decomposition","authors":"Yu-Zu Li, Sheng-En Fang","doi":"10.1016/j.ymssp.2024.112107","DOIUrl":"https://doi.org/10.1016/j.ymssp.2024.112107","url":null,"abstract":"To improve the mode decomposition capacity of the empirical Fourier transform for time-varying structures, an empirical multi-synchroextracting decomposition method has been proposed and applied to mode analysis of time-varying structures. The multi-synchroextracting transform is introduced to obtain the time–frequency coefficients and the time–frequency spectra of response signals. Then, the time–frequency energy of an arbitrary frequency line is obtained by summing the time–frequency coefficients along the entire time history. Due to the total time–frequency energy within the characteristic frequency band is larger than the energy within an adjacent region outside the frequency band, an energy segmentation operator is constructed to determine the energy spectrum boundaries for each mono-component signal. Once the boundaries are found, a zero-phase filter bank and the Fourier transform are used to accomplish frequency spectrum segmentation of the mono-component signal. Finally, each mono-component signal is reconstructed by employing the inverse Fourier transform to each segment, which realizes the mode decomposition of a time-varying structure. The feasibility of the proposed method has been verified against a numerical 2DOF mass-spring-damper system, a numerical three-story frame structure and an experimental twelve-story reinforced concrete frame structure. The analysis results show that the proposed method provides better precision than the empirical Fourier transform in the aspect of time-varying mode decomposition. Moreover, the proposed method has higher decomposition accuracy in the presence of high interference between adjacent frequency bands.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"18 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term continuous dynamic monitoring of an eight-story CLT building 对八层 CLT 建筑进行长期连续动态监测
IF 8.4 1区 工程技术
Mechanical Systems and Signal Processing Pub Date : 2024-11-07 DOI: 10.1016/j.ymssp.2024.112094
Angelo Aloisio, Dag Pasquale Pasca, Blaž Kurent, Roberto Tomasi
{"title":"Long-term continuous dynamic monitoring of an eight-story CLT building","authors":"Angelo Aloisio, Dag Pasquale Pasca, Blaž Kurent, Roberto Tomasi","doi":"10.1016/j.ymssp.2024.112094","DOIUrl":"https://doi.org/10.1016/j.ymssp.2024.112094","url":null,"abstract":"This paper presents the continuous monitoring of an eight-story cross-laminated timber (CLT) building. The monitoring process includes daily acceleration measurements at the rooftop, along with external temperature, humidity, and wind velocity data. Additionally, moisture content (MC) of timber at various locations in the internal and perimeter walls is measured. The extraction of modal parameters is automated and is based on the Stochastic Subspace Identification method. This research primarily evaluates how environmental factors, particularly temperature, wood MC, snow height, and wind velocity, affect the building’s modal parameters and vibrational response. The data has been found to significantly correlate with temperature, wood MC, and snow level. Subsequently, the authors performed a Bayesian model updating of the building to estimate the relationship between the shear modulus of CLT and the MC. This analysis has led to an empirical formula for predicting the stiffness properties of CLT walls based on wood MC derived from long-term monitoring of a timber building. To the authors’ knowledge, it is the first empirical expression relating a mechanical property of timber and MC, indirectly estimated from ambient vibration data.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"64 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of ultrasonic vibration on fatigue life of Inconel 718 machined by high-speed milling: Physics-enhanced machine learning approach 超声波振动对高速铣削加工的 Inconel 718 的疲劳寿命的影响:物理增强型机器学习方法
IF 8.4 1区 工程技术
Mechanical Systems and Signal Processing Pub Date : 2024-11-07 DOI: 10.1016/j.ymssp.2024.112115
Reza Teimouri, Marcin Grabowski
{"title":"Effect of ultrasonic vibration on fatigue life of Inconel 718 machined by high-speed milling: Physics-enhanced machine learning approach","authors":"Reza Teimouri, Marcin Grabowski","doi":"10.1016/j.ymssp.2024.112115","DOIUrl":"https://doi.org/10.1016/j.ymssp.2024.112115","url":null,"abstract":"Ultrasonic assisted high-speed machining (UAHSM) can be served as a thermomechanical surface sever plastic deformation (SSPD), because of the high-frequency impact load exerting to the sample together with thermomechanical loads due to shearing and plowing. Despite existing of few works which studied the impact of ultrasonic vibration on fatigue life assessment of difficult-to-cut material by experimental approach, they couldn’t provide an in-depth analysis to identify the underlying mechanisms of fatigue due time-consuming and costly fatigue life tests. Hence, elucidating the role of ultrasonic vibration in UAHSM on variation of fatigue life needs further studies. In order to do so, in the present work, a hybrid predictive approach based using ANFIS-based machine learning model and micromechanical Navaro-Rios (NR) fatigue crack propagation model has been introduced to directly correlates the UAHSM’s parameters to fatigue life. Here the former correlates feed rate, cutting velocity and vibration amplitude as process inputs, to surface integrity aspects (SIA) viz residual stress, roughness and grain size as output. Then, the modeled SIA are correlated to fatigue life using the former. The introduced hybrid model was then verified through series of UAHSM by examining the fatigue lives of milled Inconel 718 using four-point bending fatigue tests. Upon confirmation of the developed model, a comprehensive study was carried out to find how the process factors impact variation of SIA and subsequently fatigue. It was found from the results of developed models and confirmatory experiments that the role of ultrasonic vibration on improved fatigue life is mainly due to inducing compressive residual stress and more refined microstructure than the roughness.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"53 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信