基于自适应振动去噪的高效无人机故障诊断:一种旋翼机系统的信号处理方法

IF 8.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Yuchen He , Husheng Fang , Jun Yan , Chengsong Yang , Yi Zhai
{"title":"基于自适应振动去噪的高效无人机故障诊断:一种旋翼机系统的信号处理方法","authors":"Yuchen He ,&nbsp;Husheng Fang ,&nbsp;Jun Yan ,&nbsp;Chengsong Yang ,&nbsp;Yi Zhai","doi":"10.1016/j.ymssp.2025.113413","DOIUrl":null,"url":null,"abstract":"<div><div>Reliable diagnosis of incipient faults in unmanned aerial vehicles (UAVs) requires denoising methods capable of suppressing mixed noise while preserving short-duration, low-SNR fault signatures. This study presents an Adaptive Dual-Tree Complex Wavelet Transform (ADTCWT) with optimized thresholds via K-means Crowding Differentiated Creative Search (KCDCS), coupled with a Dynamic Attention-Weighted Gradient Boosting Ensemble (DAW-GBE) for fault classification. Validation employed the ICUAS-2023 UAV Fault Diagnosis (UAV-FD) benchmark under Gaussian–impulsive noise, and a DJI Phantom 4 Pro dataset with induced motor looseness, blade damage, and foreign-object debris imbalance. On UAV-FD, ADTCWT surpassed baseline DTCWT, a literature wavelet, and improved SVD + VMD, yielding SNR 16.30 dB, PSNR 20.68 dB, and correlation 0.9548 under 10 % fault severity. Time–frequency analysis confirmed the concentration of fault energy in 50–500  Hz, without introducing spurious components. On DJI data (100  Hz sampling), ADTCWT increased SNR from − 4.25 dB to 23.92 dB, achieved correlation 0.997 with MAE 0.023, and maintained stability across − 6.0 to + 6.0 dB input SNR. KCDCS converged within 40 iterations at 0.032  s/iteration. With ADTCWT preprocessing, DAW-GBE attained 96.1 % accuracy, reduced misclassification between blade damage and looseness by 10.8 %, and reached AUC 0.998. All performance gains were statistically significant at p &lt; 0.01, underlining the framework’s suitability for reliable, on-board UAV health monitoring.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"240 ","pages":"Article 113413"},"PeriodicalIF":8.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computationally efficient UAV fault diagnosis with adaptive vibration denoising: A signal processing approach for rotorcraft systems\",\"authors\":\"Yuchen He ,&nbsp;Husheng Fang ,&nbsp;Jun Yan ,&nbsp;Chengsong Yang ,&nbsp;Yi Zhai\",\"doi\":\"10.1016/j.ymssp.2025.113413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reliable diagnosis of incipient faults in unmanned aerial vehicles (UAVs) requires denoising methods capable of suppressing mixed noise while preserving short-duration, low-SNR fault signatures. This study presents an Adaptive Dual-Tree Complex Wavelet Transform (ADTCWT) with optimized thresholds via K-means Crowding Differentiated Creative Search (KCDCS), coupled with a Dynamic Attention-Weighted Gradient Boosting Ensemble (DAW-GBE) for fault classification. Validation employed the ICUAS-2023 UAV Fault Diagnosis (UAV-FD) benchmark under Gaussian–impulsive noise, and a DJI Phantom 4 Pro dataset with induced motor looseness, blade damage, and foreign-object debris imbalance. On UAV-FD, ADTCWT surpassed baseline DTCWT, a literature wavelet, and improved SVD + VMD, yielding SNR 16.30 dB, PSNR 20.68 dB, and correlation 0.9548 under 10 % fault severity. Time–frequency analysis confirmed the concentration of fault energy in 50–500  Hz, without introducing spurious components. On DJI data (100  Hz sampling), ADTCWT increased SNR from − 4.25 dB to 23.92 dB, achieved correlation 0.997 with MAE 0.023, and maintained stability across − 6.0 to + 6.0 dB input SNR. KCDCS converged within 40 iterations at 0.032  s/iteration. With ADTCWT preprocessing, DAW-GBE attained 96.1 % accuracy, reduced misclassification between blade damage and looseness by 10.8 %, and reached AUC 0.998. All performance gains were statistically significant at p &lt; 0.01, underlining the framework’s suitability for reliable, on-board UAV health monitoring.</div></div>\",\"PeriodicalId\":51124,\"journal\":{\"name\":\"Mechanical Systems and Signal Processing\",\"volume\":\"240 \",\"pages\":\"Article 113413\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888327025011148\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025011148","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

无人机早期故障的可靠诊断需要能够抑制混合噪声的降噪方法,同时保持短持续时间、低信噪比的故障特征。本文提出了一种基于K-means拥挤差异化创造性搜索(KCDCS)优化阈值的自适应双树复小波变换(ADTCWT),并结合动态注意力加权梯度增强集成(dawe - gbe)进行故障分类。验证采用高斯脉冲噪声下ICUAS-2023无人机故障诊断(UAV- fd)基准测试,以及具有诱导电机松动、叶片损伤和异物碎片不平衡的大疆Phantom 4 Pro数据集。在无人机- fd上,ADTCWT优于基线DTCWT(文献小波)和改进的SVD + VMD,在10%故障严重程度下,信噪比为16.30 dB, PSNR为20.68 dB,相关性为0.9548。时频分析证实故障能量集中在50 - 500hz,没有引入杂散分量。在DJI数据(100 Hz采样)上,ADTCWT将信噪比从- 4.25 dB提高到23.92 dB,与MAE的相关性为0.997,在- 6.0 ~ + 6.0 dB输入信噪比范围内保持稳定。KCDCS以0.032 s/迭代的速度在40次迭代内收敛。经ADTCWT预处理后,DAW-GBE准确率达到96.1%,叶片损伤与松动的误分类率降低了10.8%,AUC达到0.998。所有性能增益在p <; 0.01时均具有统计学意义,强调了该框架适用于可靠的机载无人机健康监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computationally efficient UAV fault diagnosis with adaptive vibration denoising: A signal processing approach for rotorcraft systems
Reliable diagnosis of incipient faults in unmanned aerial vehicles (UAVs) requires denoising methods capable of suppressing mixed noise while preserving short-duration, low-SNR fault signatures. This study presents an Adaptive Dual-Tree Complex Wavelet Transform (ADTCWT) with optimized thresholds via K-means Crowding Differentiated Creative Search (KCDCS), coupled with a Dynamic Attention-Weighted Gradient Boosting Ensemble (DAW-GBE) for fault classification. Validation employed the ICUAS-2023 UAV Fault Diagnosis (UAV-FD) benchmark under Gaussian–impulsive noise, and a DJI Phantom 4 Pro dataset with induced motor looseness, blade damage, and foreign-object debris imbalance. On UAV-FD, ADTCWT surpassed baseline DTCWT, a literature wavelet, and improved SVD + VMD, yielding SNR 16.30 dB, PSNR 20.68 dB, and correlation 0.9548 under 10 % fault severity. Time–frequency analysis confirmed the concentration of fault energy in 50–500  Hz, without introducing spurious components. On DJI data (100  Hz sampling), ADTCWT increased SNR from − 4.25 dB to 23.92 dB, achieved correlation 0.997 with MAE 0.023, and maintained stability across − 6.0 to + 6.0 dB input SNR. KCDCS converged within 40 iterations at 0.032  s/iteration. With ADTCWT preprocessing, DAW-GBE attained 96.1 % accuracy, reduced misclassification between blade damage and looseness by 10.8 %, and reached AUC 0.998. All performance gains were statistically significant at p < 0.01, underlining the framework’s suitability for reliable, on-board UAV health monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信