Lithuanian Mathematical Journal最新文献

筛选
英文 中文
On the closure under infinitely divisible distribution roots 关于无穷可分分布根下的闭包
IF 0.4 4区 数学
Lithuanian Mathematical Journal Pub Date : 2022-03-01 DOI: 10.1007/s10986-022-09558-9
Hui Xu, Yuebao Wang, Dongya Cheng, Changjun Yu
{"title":"On the closure under infinitely divisible distribution roots","authors":"Hui Xu, Yuebao Wang, Dongya Cheng, Changjun Yu","doi":"10.1007/s10986-022-09558-9","DOIUrl":"https://doi.org/10.1007/s10986-022-09558-9","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":"62 1","pages":"259 - 287"},"PeriodicalIF":0.4,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43006043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
How to compare power towers? 如何比较电力塔?
IF 0.4 4区 数学
Lithuanian Mathematical Journal Pub Date : 2022-03-01 DOI: 10.1007/s10986-022-09562-z
K. Gryszka
{"title":"How to compare power towers?","authors":"K. Gryszka","doi":"10.1007/s10986-022-09562-z","DOIUrl":"https://doi.org/10.1007/s10986-022-09562-z","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":"62 1","pages":"192 - 206"},"PeriodicalIF":0.4,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48977700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Some Approximations for Sums of Independent Random Variables 关于独立随机变量和的一些近似
IF 0.4 4区 数学
Lithuanian Mathematical Journal Pub Date : 2022-03-01 DOI: 10.1007/s10986-022-09560-1
Jonas Kazys Sunklodas
{"title":"On Some Approximations for Sums of Independent Random Variables","authors":"Jonas Kazys Sunklodas","doi":"10.1007/s10986-022-09560-1","DOIUrl":"https://doi.org/10.1007/s10986-022-09560-1","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":"90 4","pages":"218-238"},"PeriodicalIF":0.4,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138495166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Some Approximations for Sums of Independent Random Variables 关于独立随机变量和的一些逼近
IF 0.4 4区 数学
Lithuanian Mathematical Journal Pub Date : 2022-03-01 DOI: 10.1007/s10986-023-09599-8
J. Sunklodas
{"title":"On Some Approximations for Sums of Independent Random Variables","authors":"J. Sunklodas","doi":"10.1007/s10986-023-09599-8","DOIUrl":"https://doi.org/10.1007/s10986-023-09599-8","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":"62 1","pages":"218 - 238"},"PeriodicalIF":0.4,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45667697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hankel determinants of order four for a set of functions with bounded turning of order α 具有α阶有界转动的一组函数的四阶汉克尔行列式
IF 0.4 4区 数学
Lithuanian Mathematical Journal Pub Date : 2022-03-01 DOI: 10.1007/s10986-022-09559-8
Muhammad Arif, Mohsan Raza, Inayat Ullah, P. Zaprawa
{"title":"Hankel determinants of order four for a set of functions with bounded turning of order α","authors":"Muhammad Arif, Mohsan Raza, Inayat Ullah, P. Zaprawa","doi":"10.1007/s10986-022-09559-8","DOIUrl":"https://doi.org/10.1007/s10986-022-09559-8","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":"62 1","pages":"135 - 145"},"PeriodicalIF":0.4,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42565656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Stable fluctuations of iterated perturbed random walks in intermediate generations of a general branching process tree* 一般分支过程树中间代中迭代扰动随机游动的稳定涨落*
IF 0.4 4区 数学
Lithuanian Mathematical Journal Pub Date : 2022-02-16 DOI: 10.1007/s10986-022-09574-9
A. Iksanov, A. Marynych, B. Rashytov
{"title":"Stable fluctuations of iterated perturbed random walks in intermediate generations of a general branching process tree*","authors":"A. Iksanov, A. Marynych, B. Rashytov","doi":"10.1007/s10986-022-09574-9","DOIUrl":"https://doi.org/10.1007/s10986-022-09574-9","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":"62 1","pages":"447 - 466"},"PeriodicalIF":0.4,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48047000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On the Distribution of the Digits in Lüroth Expansions 论<s:1>罗斯展开中位数的分布
IF 0.4 4区 数学
Lithuanian Mathematical Journal Pub Date : 2022-02-03 DOI: 10.1007/s10986-022-09553-0
Qing-Long Zhou
{"title":"On the Distribution of the Digits in Lüroth Expansions","authors":"Qing-Long Zhou","doi":"10.1007/s10986-022-09553-0","DOIUrl":"https://doi.org/10.1007/s10986-022-09553-0","url":null,"abstract":"<p>For <i>x ∈</i> [0<i>,</i> 1), let [<i>d</i><sub>1</sub>(<i>x</i>)<i>, d</i><sub>2</sub>(<i>x</i>)<i>, . . .</i>] be its Lüroth expansion, and let {<i>p</i><sub><i>n</i></sub>(<i>x</i>)<i>/qn</i>(<i>x</i>)}<sub><i>n</i>≥1</sub> be the sequence of convergents of <i>x</i>. In this paper, we prove that the Hausdorff dimension of the exceptional set</p><span>$$ {F}_{alpha}^{beta }=left{xin left[left.0,1right)right.:underset{nto infty }{lim}operatorname{inf}frac{log {d}_{n+1}(x)}{-log left|x-frac{p_n(x)}{q_n(x)}right|}=alpha, underset{nto infty }{lim}sup frac{log {d}_{n+1}(x)}{-log left|x-frac{p_n(x)}{q_n(x)}right|}ge beta right} $$</span><p>is (1 <i>− β</i>)<i>/</i>2 or 1 <i>− β</i> according to <i>α &gt;</i> 0 or <i>α</i> = 0. This extends an earlier result of Tan and Zhang.</p>","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":"90 6","pages":""},"PeriodicalIF":0.4,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138495165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The quaternary Piatetski-Shapiro inequality with one prime of the form p = x2 + y2 + 1 一元质数形式为p = x2 + y2 + 1的四元Piatetski-Shapiro不等式
IF 0.4 4区 数学
Lithuanian Mathematical Journal Pub Date : 2022-02-02 DOI: 10.1007/s10986-022-09554-z
S. Dimitrov
{"title":"The quaternary Piatetski-Shapiro inequality with one prime of the form p = x2 + y2 + 1","authors":"S. Dimitrov","doi":"10.1007/s10986-022-09554-z","DOIUrl":"https://doi.org/10.1007/s10986-022-09554-z","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":"62 1","pages":"170 - 191"},"PeriodicalIF":0.4,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41469885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Euler sums of multiple hyperharmonic numbers 多个超调和数的欧拉和
IF 0.4 4区 数学
Lithuanian Mathematical Journal Pub Date : 2022-02-02 DOI: 10.1007/s10986-022-09552-1
Ce Xu, Xixi Zhang, Ying Li
{"title":"Euler sums of multiple hyperharmonic numbers","authors":"Ce Xu, Xixi Zhang, Ying Li","doi":"10.1007/s10986-022-09552-1","DOIUrl":"https://doi.org/10.1007/s10986-022-09552-1","url":null,"abstract":"<p>For <i>k</i> ≔ (<i>k</i><sub>1</sub>, …, <i>k</i><sub><i>r</i></sub>) ∈ ℕ<sup><i>r</i></sup> and <i>n</i>, <i>m</i> ∈ ℕ, we extend the definition of classical hyperharmonic numbers to define the multiple hyperharmonic numbers <span>( {zeta}_n^{(m)}(k) )</span> and the Euler sums of multiple hyperharmonic numbers <i>ζ</i><sup>(<i>m</i>)</sup>(<i>q</i>; <i>k</i>)(<i>m</i> + 2 − <i>k</i><sub>1</sub> ≤ <i>q</i> ∈ ℕ). When <b><i>k</i></b> = (<i>k</i>) ∈ ℕ, these sums were first studied by Mezö and Dil around 2010, Dil and Boyadzhiev (2015), and more recently, by Dil, Mezö, and Cenkci, Can, Kargin, Dil, and Soylu, and Li. We show that the multiple hyperharmonic numbers <span>( {zeta}_n^{(m)}(k) )</span> can be expressed in terms combinations of products of polynomial in <i>n</i> of degree at most <i>m −</i> 1 and classical multiple harmonic sums with depth ≤ <i>r</i>, and prove that the Euler sums of multiple hyperharmonic numbers <i>ζ</i><sup>(<i>m</i>)</sup> (<i>q</i>; <b><i>k</i></b>) can be evaluated by classical multiple zeta values with weight ≤ <i>q</i> + <i>|</i><b><i>k</i></b><i>|</i> and depth ≤ <i>r</i> + 1.</p>","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":"90 8","pages":""},"PeriodicalIF":0.4,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138495164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On multiplicative functions that are small on average and zero-free regions for the Riemann zeta function 关于平均较小的乘法函数和黎曼ζ函数的无零区域
IF 0.4 4区 数学
Lithuanian Mathematical Journal Pub Date : 2022-02-02 DOI: 10.1007/s10986-022-09555-y
Marco Aymone
{"title":"On multiplicative functions that are small on average and zero-free regions for the Riemann zeta function","authors":"Marco Aymone","doi":"10.1007/s10986-022-09555-y","DOIUrl":"https://doi.org/10.1007/s10986-022-09555-y","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":"62 1","pages":"146 - 149"},"PeriodicalIF":0.4,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42672449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信