{"title":"On the Distribution of the Digits in Lüroth Expansions","authors":"Qing-Long Zhou","doi":"10.1007/s10986-022-09553-0","DOIUrl":"https://doi.org/10.1007/s10986-022-09553-0","url":null,"abstract":"<p>For <i>x ∈</i> [0<i>,</i> 1), let [<i>d</i><sub>1</sub>(<i>x</i>)<i>, d</i><sub>2</sub>(<i>x</i>)<i>, . . .</i>] be its Lüroth expansion, and let {<i>p</i><sub><i>n</i></sub>(<i>x</i>)<i>/qn</i>(<i>x</i>)}<sub><i>n</i>≥1</sub> be the sequence of convergents of <i>x</i>. In this paper, we prove that the Hausdorff dimension of the exceptional set</p><span>$$ {F}_{alpha}^{beta }=left{xin left[left.0,1right)right.:underset{nto infty }{lim}operatorname{inf}frac{log {d}_{n+1}(x)}{-log left|x-frac{p_n(x)}{q_n(x)}right|}=alpha, underset{nto infty }{lim}sup frac{log {d}_{n+1}(x)}{-log left|x-frac{p_n(x)}{q_n(x)}right|}ge beta right} $$</span><p>is (1 <i>− β</i>)<i>/</i>2 or 1 <i>− β</i> according to <i>α ></i> 0 or <i>α</i> = 0. This extends an earlier result of Tan and Zhang.</p>","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138495165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The quaternary Piatetski-Shapiro inequality with one prime of the form p = x2 + y2 + 1","authors":"S. Dimitrov","doi":"10.1007/s10986-022-09554-z","DOIUrl":"https://doi.org/10.1007/s10986-022-09554-z","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41469885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Euler sums of multiple hyperharmonic numbers","authors":"Ce Xu, Xixi Zhang, Ying Li","doi":"10.1007/s10986-022-09552-1","DOIUrl":"https://doi.org/10.1007/s10986-022-09552-1","url":null,"abstract":"<p>For <i>k</i> ≔ (<i>k</i><sub>1</sub>, …, <i>k</i><sub><i>r</i></sub>) ∈ ℕ<sup><i>r</i></sup> and <i>n</i>, <i>m</i> ∈ ℕ, we extend the definition of classical hyperharmonic numbers to define the multiple hyperharmonic numbers <span>( {zeta}_n^{(m)}(k) )</span> and the Euler sums of multiple hyperharmonic numbers <i>ζ</i><sup>(<i>m</i>)</sup>(<i>q</i>; <i>k</i>)(<i>m</i> + 2 − <i>k</i><sub>1</sub> ≤ <i>q</i> ∈ ℕ). When <b><i>k</i></b> = (<i>k</i>) ∈ ℕ, these sums were first studied by Mezö and Dil around 2010, Dil and Boyadzhiev (2015), and more recently, by Dil, Mezö, and Cenkci, Can, Kargin, Dil, and Soylu, and Li. We show that the multiple hyperharmonic numbers <span>( {zeta}_n^{(m)}(k) )</span> can be expressed in terms combinations of products of polynomial in <i>n</i> of degree at most <i>m −</i> 1 and classical multiple harmonic sums with depth ≤ <i>r</i>, and prove that the Euler sums of multiple hyperharmonic numbers <i>ζ</i><sup>(<i>m</i>)</sup> (<i>q</i>; <b><i>k</i></b>) can be evaluated by classical multiple zeta values with weight ≤ <i>q</i> + <i>|</i><b><i>k</i></b><i>|</i> and depth ≤ <i>r</i> + 1.</p>","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138495164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On multiplicative functions that are small on average and zero-free regions for the Riemann zeta function","authors":"Marco Aymone","doi":"10.1007/s10986-022-09555-y","DOIUrl":"https://doi.org/10.1007/s10986-022-09555-y","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42672449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotic behaviors of convolution powers of the Riemann zeta distribution","authors":"T. Aoyama, Ryuya Namba, Koki Ota","doi":"10.1007/s10986-023-09585-0","DOIUrl":"https://doi.org/10.1007/s10986-023-09585-0","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47576808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Zero-free regions of the fractional derivatives of the Riemann zeta function","authors":"S. Pauli, F. Saidak","doi":"10.1007/s10986-022-09551-2","DOIUrl":"https://doi.org/10.1007/s10986-022-09551-2","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52932493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximation by some subsequences of matrix means","authors":"X. Krasniqi, W. Lenski, B. Szal","doi":"10.1007/s10986-022-09557-w","DOIUrl":"https://doi.org/10.1007/s10986-022-09557-w","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48105835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: A Hardy–Ramanujan-type inequality for shifted primes and sifted sets","authors":"Kevin Ford","doi":"10.1007/s10986-021-09550-9","DOIUrl":"https://doi.org/10.1007/s10986-021-09550-9","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49242858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Limit distributions for the maxima of discrete random variables under monotone normalization","authors":"K. Mitov, S. Nadarajah","doi":"10.1007/s10986-021-09545-6","DOIUrl":"https://doi.org/10.1007/s10986-021-09545-6","url":null,"abstract":"","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47304203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}