多个超调和数的欧拉和

Pub Date : 2022-02-02 DOI:10.1007/s10986-022-09552-1
Ce Xu, Xixi Zhang, Ying Li
{"title":"多个超调和数的欧拉和","authors":"Ce Xu, Xixi Zhang, Ying Li","doi":"10.1007/s10986-022-09552-1","DOIUrl":null,"url":null,"abstract":"<p>For <i>k</i> ≔ (<i>k</i><sub>1</sub>, …, <i>k</i><sub><i>r</i></sub>) ∈ ℕ<sup><i>r</i></sup> and <i>n</i>, <i>m</i> ∈ ℕ, we extend the definition of classical hyperharmonic numbers to define the multiple hyperharmonic numbers <span>\\( {\\zeta}_n^{(m)}(k) \\)</span> and the Euler sums of multiple hyperharmonic numbers <i>ζ</i><sup>(<i>m</i>)</sup>(<i>q</i>; <i>k</i>)(<i>m</i> + 2 − <i>k</i><sub>1</sub> ≤ <i>q</i> ∈ ℕ). When <b><i>k</i></b> = (<i>k</i>) ∈ ℕ, these sums were first studied by Mezö and Dil around 2010, Dil and Boyadzhiev (2015), and more recently, by Dil, Mezö, and Cenkci, Can, Kargin, Dil, and Soylu, and Li. We show that the multiple hyperharmonic numbers <span>\\( {\\zeta}_n^{(m)}(k) \\)</span> can be expressed in terms combinations of products of polynomial in <i>n</i> of degree at most <i>m −</i> 1 and classical multiple harmonic sums with depth ≤ <i>r</i>, and prove that the Euler sums of multiple hyperharmonic numbers <i>ζ</i><sup>(<i>m</i>)</sup> (<i>q</i>; <b><i>k</i></b>) can be evaluated by classical multiple zeta values with weight ≤ <i>q</i> + <i>|</i><b><i>k</i></b><i>|</i> and depth ≤ <i>r</i> + 1.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euler sums of multiple hyperharmonic numbers\",\"authors\":\"Ce Xu, Xixi Zhang, Ying Li\",\"doi\":\"10.1007/s10986-022-09552-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For <i>k</i> ≔ (<i>k</i><sub>1</sub>, …, <i>k</i><sub><i>r</i></sub>) ∈ ℕ<sup><i>r</i></sup> and <i>n</i>, <i>m</i> ∈ ℕ, we extend the definition of classical hyperharmonic numbers to define the multiple hyperharmonic numbers <span>\\\\( {\\\\zeta}_n^{(m)}(k) \\\\)</span> and the Euler sums of multiple hyperharmonic numbers <i>ζ</i><sup>(<i>m</i>)</sup>(<i>q</i>; <i>k</i>)(<i>m</i> + 2 − <i>k</i><sub>1</sub> ≤ <i>q</i> ∈ ℕ). When <b><i>k</i></b> = (<i>k</i>) ∈ ℕ, these sums were first studied by Mezö and Dil around 2010, Dil and Boyadzhiev (2015), and more recently, by Dil, Mezö, and Cenkci, Can, Kargin, Dil, and Soylu, and Li. We show that the multiple hyperharmonic numbers <span>\\\\( {\\\\zeta}_n^{(m)}(k) \\\\)</span> can be expressed in terms combinations of products of polynomial in <i>n</i> of degree at most <i>m −</i> 1 and classical multiple harmonic sums with depth ≤ <i>r</i>, and prove that the Euler sums of multiple hyperharmonic numbers <i>ζ</i><sup>(<i>m</i>)</sup> (<i>q</i>; <b><i>k</i></b>) can be evaluated by classical multiple zeta values with weight ≤ <i>q</i> + <i>|</i><b><i>k</i></b><i>|</i> and depth ≤ <i>r</i> + 1.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-022-09552-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-022-09552-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于k (k1,…,kr)∈_1,r和n, m∈_1,我们扩展了经典超调和数的定义,定义了多个超调和数\( {\zeta}_n^{(m)}(k) \)和多个超调和数ζ(m)(q; k)(m + 2−k1≤q∈_1)的欧拉和。当k = (k)∈n时,这些和首先由Mezö和Dil在2010年左右研究,Dil和Boyadzhiev(2015),最近由Dil, Mezö和Cenkci, Can, Kargin, Dil, Soylu和Li研究。我们证明了多重超调和数\( {\zeta}_n^{(m)}(k) \)可以用n中阶数最多为m−1的多项式的积和深度≤r的经典多重调和和的组合来表示,并证明了多重超调和数的欧拉和ζ(m) (q;K)可以用权重≤q + | K |深度≤r + 1的经典多重zeta值来求值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Euler sums of multiple hyperharmonic numbers

For k ≔ (k1, …, kr) ∈ ℕr and n, m ∈ ℕ, we extend the definition of classical hyperharmonic numbers to define the multiple hyperharmonic numbers \( {\zeta}_n^{(m)}(k) \) and the Euler sums of multiple hyperharmonic numbers ζ(m)(q; k)(m + 2 − k1 ≤ q ∈ ℕ). When k = (k) ∈ ℕ, these sums were first studied by Mezö and Dil around 2010, Dil and Boyadzhiev (2015), and more recently, by Dil, Mezö, and Cenkci, Can, Kargin, Dil, and Soylu, and Li. We show that the multiple hyperharmonic numbers \( {\zeta}_n^{(m)}(k) \) can be expressed in terms combinations of products of polynomial in n of degree at most m − 1 and classical multiple harmonic sums with depth ≤ r, and prove that the Euler sums of multiple hyperharmonic numbers ζ(m) (q; k) can be evaluated by classical multiple zeta values with weight ≤ q + |k| and depth ≤ r + 1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信