{"title":"多个超调和数的欧拉和","authors":"Ce Xu, Xixi Zhang, Ying Li","doi":"10.1007/s10986-022-09552-1","DOIUrl":null,"url":null,"abstract":"<p>For <i>k</i> ≔ (<i>k</i><sub>1</sub>, …, <i>k</i><sub><i>r</i></sub>) ∈ ℕ<sup><i>r</i></sup> and <i>n</i>, <i>m</i> ∈ ℕ, we extend the definition of classical hyperharmonic numbers to define the multiple hyperharmonic numbers <span>\\( {\\zeta}_n^{(m)}(k) \\)</span> and the Euler sums of multiple hyperharmonic numbers <i>ζ</i><sup>(<i>m</i>)</sup>(<i>q</i>; <i>k</i>)(<i>m</i> + 2 − <i>k</i><sub>1</sub> ≤ <i>q</i> ∈ ℕ). When <b><i>k</i></b> = (<i>k</i>) ∈ ℕ, these sums were first studied by Mezö and Dil around 2010, Dil and Boyadzhiev (2015), and more recently, by Dil, Mezö, and Cenkci, Can, Kargin, Dil, and Soylu, and Li. We show that the multiple hyperharmonic numbers <span>\\( {\\zeta}_n^{(m)}(k) \\)</span> can be expressed in terms combinations of products of polynomial in <i>n</i> of degree at most <i>m −</i> 1 and classical multiple harmonic sums with depth ≤ <i>r</i>, and prove that the Euler sums of multiple hyperharmonic numbers <i>ζ</i><sup>(<i>m</i>)</sup> (<i>q</i>; <b><i>k</i></b>) can be evaluated by classical multiple zeta values with weight ≤ <i>q</i> + <i>|</i><b><i>k</i></b><i>|</i> and depth ≤ <i>r</i> + 1.</p>","PeriodicalId":51108,"journal":{"name":"Lithuanian Mathematical Journal","volume":"90 8","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euler sums of multiple hyperharmonic numbers\",\"authors\":\"Ce Xu, Xixi Zhang, Ying Li\",\"doi\":\"10.1007/s10986-022-09552-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For <i>k</i> ≔ (<i>k</i><sub>1</sub>, …, <i>k</i><sub><i>r</i></sub>) ∈ ℕ<sup><i>r</i></sup> and <i>n</i>, <i>m</i> ∈ ℕ, we extend the definition of classical hyperharmonic numbers to define the multiple hyperharmonic numbers <span>\\\\( {\\\\zeta}_n^{(m)}(k) \\\\)</span> and the Euler sums of multiple hyperharmonic numbers <i>ζ</i><sup>(<i>m</i>)</sup>(<i>q</i>; <i>k</i>)(<i>m</i> + 2 − <i>k</i><sub>1</sub> ≤ <i>q</i> ∈ ℕ). When <b><i>k</i></b> = (<i>k</i>) ∈ ℕ, these sums were first studied by Mezö and Dil around 2010, Dil and Boyadzhiev (2015), and more recently, by Dil, Mezö, and Cenkci, Can, Kargin, Dil, and Soylu, and Li. We show that the multiple hyperharmonic numbers <span>\\\\( {\\\\zeta}_n^{(m)}(k) \\\\)</span> can be expressed in terms combinations of products of polynomial in <i>n</i> of degree at most <i>m −</i> 1 and classical multiple harmonic sums with depth ≤ <i>r</i>, and prove that the Euler sums of multiple hyperharmonic numbers <i>ζ</i><sup>(<i>m</i>)</sup> (<i>q</i>; <b><i>k</i></b>) can be evaluated by classical multiple zeta values with weight ≤ <i>q</i> + <i>|</i><b><i>k</i></b><i>|</i> and depth ≤ <i>r</i> + 1.</p>\",\"PeriodicalId\":51108,\"journal\":{\"name\":\"Lithuanian Mathematical Journal\",\"volume\":\"90 8\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithuanian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-022-09552-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithuanian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-022-09552-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
For k ≔ (k1, …, kr) ∈ ℕr and n, m ∈ ℕ, we extend the definition of classical hyperharmonic numbers to define the multiple hyperharmonic numbers \( {\zeta}_n^{(m)}(k) \) and the Euler sums of multiple hyperharmonic numbers ζ(m)(q; k)(m + 2 − k1 ≤ q ∈ ℕ). When k = (k) ∈ ℕ, these sums were first studied by Mezö and Dil around 2010, Dil and Boyadzhiev (2015), and more recently, by Dil, Mezö, and Cenkci, Can, Kargin, Dil, and Soylu, and Li. We show that the multiple hyperharmonic numbers \( {\zeta}_n^{(m)}(k) \) can be expressed in terms combinations of products of polynomial in n of degree at most m − 1 and classical multiple harmonic sums with depth ≤ r, and prove that the Euler sums of multiple hyperharmonic numbers ζ(m) (q; k) can be evaluated by classical multiple zeta values with weight ≤ q + |k| and depth ≤ r + 1.
期刊介绍:
The Lithuanian Mathematical Journal publishes high-quality original papers mainly in pure mathematics. This multidisciplinary quarterly provides mathematicians and researchers in other areas of science with a peer-reviewed forum for the exchange of vital ideas in the field of mathematics.
The scope of the journal includes but is not limited to:
Probability theory and statistics;
Differential equations (theory and numerical methods);
Number theory;
Financial and actuarial mathematics, econometrics.