罗斯展开中位数的分布

Pub Date : 2022-02-03 DOI:10.1007/s10986-022-09553-0
Qing-Long Zhou
{"title":"论<s:1>罗斯展开中位数的分布","authors":"Qing-Long Zhou","doi":"10.1007/s10986-022-09553-0","DOIUrl":null,"url":null,"abstract":"<p>For <i>x ∈</i> [0<i>,</i> 1), let [<i>d</i><sub>1</sub>(<i>x</i>)<i>, d</i><sub>2</sub>(<i>x</i>)<i>, . . .</i>] be its Lüroth expansion, and let {<i>p</i><sub><i>n</i></sub>(<i>x</i>)<i>/qn</i>(<i>x</i>)}<sub><i>n</i>≥1</sub> be the sequence of convergents of <i>x</i>. In this paper, we prove that the Hausdorff dimension of the exceptional set</p><span>$$ {F}_{\\alpha}^{\\beta }=\\left\\{x\\in \\left[\\left.0,1\\right)\\right.:\\underset{n\\to \\infty }{\\lim}\\operatorname{inf}\\frac{\\log\\ {d}_{n+1}(x)}{-\\log \\left|x-\\frac{p_n(x)}{q_n(x)}\\right|}=\\alpha, \\underset{n\\to \\infty }{\\lim}\\sup \\frac{\\log\\ {d}_{n+1}(x)}{-\\log \\left|x-\\frac{p_n(x)}{q_n(x)}\\right|}\\ge \\beta \\right\\} $$</span><p>is (1 <i>− β</i>)<i>/</i>2 or 1 <i>− β</i> according to <i>α &gt;</i> 0 or <i>α</i> = 0. This extends an earlier result of Tan and Zhang.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Distribution of the Digits in Lüroth Expansions\",\"authors\":\"Qing-Long Zhou\",\"doi\":\"10.1007/s10986-022-09553-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For <i>x ∈</i> [0<i>,</i> 1), let [<i>d</i><sub>1</sub>(<i>x</i>)<i>, d</i><sub>2</sub>(<i>x</i>)<i>, . . .</i>] be its Lüroth expansion, and let {<i>p</i><sub><i>n</i></sub>(<i>x</i>)<i>/qn</i>(<i>x</i>)}<sub><i>n</i>≥1</sub> be the sequence of convergents of <i>x</i>. In this paper, we prove that the Hausdorff dimension of the exceptional set</p><span>$$ {F}_{\\\\alpha}^{\\\\beta }=\\\\left\\\\{x\\\\in \\\\left[\\\\left.0,1\\\\right)\\\\right.:\\\\underset{n\\\\to \\\\infty }{\\\\lim}\\\\operatorname{inf}\\\\frac{\\\\log\\\\ {d}_{n+1}(x)}{-\\\\log \\\\left|x-\\\\frac{p_n(x)}{q_n(x)}\\\\right|}=\\\\alpha, \\\\underset{n\\\\to \\\\infty }{\\\\lim}\\\\sup \\\\frac{\\\\log\\\\ {d}_{n+1}(x)}{-\\\\log \\\\left|x-\\\\frac{p_n(x)}{q_n(x)}\\\\right|}\\\\ge \\\\beta \\\\right\\\\} $$</span><p>is (1 <i>− β</i>)<i>/</i>2 or 1 <i>− β</i> according to <i>α &gt;</i> 0 or <i>α</i> = 0. This extends an earlier result of Tan and Zhang.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-022-09553-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-022-09553-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于x∈[0,1),设[d1(x), d2(x),…]是它的l罗斯展开式,设{pn(x)/qn(x)}n≥1是x的收敛序列。本文根据α &gt证明了例外集$$ {F}_{\alpha}^{\beta }=\left\{x\in \left[\left.0,1\right)\right.:\underset{n\to \infty }{\lim}\operatorname{inf}\frac{\log\ {d}_{n+1}(x)}{-\log \left|x-\frac{p_n(x)}{q_n(x)}\right|}=\alpha, \underset{n\to \infty }{\lim}\sup \frac{\log\ {d}_{n+1}(x)}{-\log \left|x-\frac{p_n(x)}{q_n(x)}\right|}\ge \beta \right\} $$的Hausdorff维数为(1−β)/2或1−β;或者α = 0。这延伸了谭和张的早期结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Distribution of the Digits in Lüroth Expansions

For x ∈ [0, 1), let [d1(x), d2(x), . . .] be its Lüroth expansion, and let {pn(x)/qn(x)}n≥1 be the sequence of convergents of x. In this paper, we prove that the Hausdorff dimension of the exceptional set

$$ {F}_{\alpha}^{\beta }=\left\{x\in \left[\left.0,1\right)\right.:\underset{n\to \infty }{\lim}\operatorname{inf}\frac{\log\ {d}_{n+1}(x)}{-\log \left|x-\frac{p_n(x)}{q_n(x)}\right|}=\alpha, \underset{n\to \infty }{\lim}\sup \frac{\log\ {d}_{n+1}(x)}{-\log \left|x-\frac{p_n(x)}{q_n(x)}\right|}\ge \beta \right\} $$

is (1 − β)/2 or 1 − β according to α > 0 or α = 0. This extends an earlier result of Tan and Zhang.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信