{"title":"On the Distribution of the Digits in Lüroth Expansions","authors":"Qing-Long Zhou","doi":"10.1007/s10986-022-09553-0","DOIUrl":null,"url":null,"abstract":"<p>For <i>x ∈</i> [0<i>,</i> 1), let [<i>d</i><sub>1</sub>(<i>x</i>)<i>, d</i><sub>2</sub>(<i>x</i>)<i>, . . .</i>] be its Lüroth expansion, and let {<i>p</i><sub><i>n</i></sub>(<i>x</i>)<i>/qn</i>(<i>x</i>)}<sub><i>n</i>≥1</sub> be the sequence of convergents of <i>x</i>. In this paper, we prove that the Hausdorff dimension of the exceptional set</p><span>$$ {F}_{\\alpha}^{\\beta }=\\left\\{x\\in \\left[\\left.0,1\\right)\\right.:\\underset{n\\to \\infty }{\\lim}\\operatorname{inf}\\frac{\\log\\ {d}_{n+1}(x)}{-\\log \\left|x-\\frac{p_n(x)}{q_n(x)}\\right|}=\\alpha, \\underset{n\\to \\infty }{\\lim}\\sup \\frac{\\log\\ {d}_{n+1}(x)}{-\\log \\left|x-\\frac{p_n(x)}{q_n(x)}\\right|}\\ge \\beta \\right\\} $$</span><p>is (1 <i>− β</i>)<i>/</i>2 or 1 <i>− β</i> according to <i>α ></i> 0 or <i>α</i> = 0. This extends an earlier result of Tan and Zhang.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-022-09553-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For x ∈ [0, 1), let [d1(x), d2(x), . . .] be its Lüroth expansion, and let {pn(x)/qn(x)}n≥1 be the sequence of convergents of x. In this paper, we prove that the Hausdorff dimension of the exceptional set