Cell Biochemistry and Biophysics最新文献

筛选
英文 中文
Study of TRAIL and SAHA Co-Treatment on Leukemia K562 Cell Line. TRAIL 和 SAHA 联合治疗白血病 K562 细胞株的研究
IF 1.8 4区 生物学
Cell Biochemistry and Biophysics Pub Date : 2024-10-11 DOI: 10.1007/s12013-024-01543-y
Amirarsalan Alaei, Saeed Solali, Masoud Mohammad Mirzapour
{"title":"Study of TRAIL and SAHA Co-Treatment on Leukemia K562 Cell Line.","authors":"Amirarsalan Alaei, Saeed Solali, Masoud Mohammad Mirzapour","doi":"10.1007/s12013-024-01543-y","DOIUrl":"https://doi.org/10.1007/s12013-024-01543-y","url":null,"abstract":"<p><p>TRAIL (Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand) is an attractive agent being considered a potential cancer treatment. It attaches to its death receptors, leading many cancer cells to apoptosis. However, some malignancies indicate substantial resistance to TRAIL, challenging anticancer scientists. Herein, combination therapy with TRAIL plus SAHA (Suberoyl Anilide Hydroxamic Acid) was conducted to evaluate the capability of SAHA to overcome TRAIL resistance in the leukemia K562 cell line. First, the IC<sub>50</sub> for SAHA was calculated (2 µM) at 12, 24, 48, and 72 h of treatment using MTT assay. Second, the K562 cells were treated with concentrations of 50 and 100 nM of TRAIL and 2 μM of SAHA separately and together for 24, 48, and 72 h and the survival of these cells was evaluated by Flowcytometry following the annexin-V and PI staining. To demonstrate the non-toxicity of the combined treatment for normal cells, the HEK-293 cell line was treated with the TRAIL 100 nM and SAHA 2 μM combined and separated at the same periods. In the end, by performing real-time PCR, the amount of candidate genes' expression implicated in TRAIL resistance, and the levels of BCR-ABL expression was measured. The drug dosages were not toxic to normal cells. SAHA plus TRAIL strongly triggered apoptosis in K562 cells after 24, 48, and 72 h of exposure. Furthermore, it was shown that DR4, DR5, and CHOP expressions were enhanced, and PI3K, Akt, ERK, STAT3, c-FLIPL, NF-κB, and BCR-ABL expressions were decreased by SAHA in K562 cells. Our study indicated that SAHA combined with TRAIL can increase the sensitivity of K562 leukemic cells to TRAIL by suppressing intracellular anti-apoptotic molecules and augmenting the expressions of DR4/DR5 and CHOP.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Osteogenic Metabolic Differentiation of Silver Nanoparticles-based Periodontal Ligament Fibroblasts on Orthodontic Tooth Movement. 基于银纳米颗粒的牙周韧带成纤维细胞的成骨代谢分化对正畸牙齿移动的影响
IF 1.8 4区 生物学
Cell Biochemistry and Biophysics Pub Date : 2024-10-10 DOI: 10.1007/s12013-024-01580-7
Juan Fu, Kun Meng, Qingmin Yuan
{"title":"Effect of Osteogenic Metabolic Differentiation of Silver Nanoparticles-based Periodontal Ligament Fibroblasts on Orthodontic Tooth Movement.","authors":"Juan Fu, Kun Meng, Qingmin Yuan","doi":"10.1007/s12013-024-01580-7","DOIUrl":"https://doi.org/10.1007/s12013-024-01580-7","url":null,"abstract":"<p><p>It was to clarify the effects of silver nanoparticles (AgNPs) on biological functions of human periodontal ligament fibroblasts (hPDLFs).</p><p><strong>Methods: </strong>AgNPs were synthesized using a tannic acid reduction method and characterized accordingly. Fifteen Sprague-Dawley rats were randomly assigned to Normal group, Group A (orthodontic tooth movement after alveolar bone defect repair with a blood clot), and Group B (orthodontic tooth movement after alveolar bone defect repair with AgNPs), with five rats in each group. Morphological changes in periodontal tissues were visualized. hPDLFs were treated with 0 μM (Ctrl), 25 μM (L-AgNPs), 50 μM (M-AgNPs), and 100 μM (H-AgNPs) AgNPs to assess cell proliferation via the MTT assay, calcification via alizarin red staining, and osteogenic differentiation and genes/proteins' expression associated with the I3K/Akt signaling pathway through quantitative polymerase chain reaction and Western blot.</p><p><strong>Results: </strong>AgNP diameter was approximately 20 nm. Relative to the normal group, both Group A and Group B exhibited increased widths of the periodontal ligament (PDL) while displaying a decrease in cell counts within the PDL (P < 0.05). Furthermore, the L-AgNPs, M-AgNPs, and H-AgNPs groups exhibited a notable elevation in the number of calcified nodules in hPDLFs, along with elevated alkaline phosphatase, Runx2, osteocalcin, osterix, type I collagen, phosphorylated phosphoinositide 3-kinase, and phosphorylated protein kinase B versus Ctrl (P < 0.05).</p><p><strong>Conclusion: </strong>AgNPs are beneficial in enhancing the biological functions of the PDL, promoting the repair and regeneration of periodontal tissues, indicating their potential clinical value in orthodontic treatments.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association Between Recurrence of High-grade Squamous Intraepithelial Lesions of the Uterine Cervix and p16, C-myc and PIK3CA Proteins-A Single-center Retrospective Study. 子宫颈高级别鳞状上皮内病变复发与 p16、C-myc 和 PIK3CA 蛋白的关系--一项单中心回顾性研究
IF 1.8 4区 生物学
Cell Biochemistry and Biophysics Pub Date : 2024-10-09 DOI: 10.1007/s12013-024-01548-7
Ya Li, Rui Zhang, Jin Zhang, Ying Gao, Yawen Bian, Wenpei Bai
{"title":"Association Between Recurrence of High-grade Squamous Intraepithelial Lesions of the Uterine Cervix and p16, C-myc and PIK3CA Proteins-A Single-center Retrospective Study.","authors":"Ya Li, Rui Zhang, Jin Zhang, Ying Gao, Yawen Bian, Wenpei Bai","doi":"10.1007/s12013-024-01548-7","DOIUrl":"https://doi.org/10.1007/s12013-024-01548-7","url":null,"abstract":"<p><p>Cervical high-grade squamous intraepithelial lesions (HSIL) are one of the common types of cervical cancer precancerous changes, and HPV16/18 positivity is a risk factor for HSIL recurrence. By detecting the expression of relevant markers in the lesion tissue of recurrent patients, it is helpful for the diagnosis of HPV16/18 positivity and can provide a basis for disease recurrence risk assessment. Therefore, this study analyzed the relationship between p16, C-myc, PIK3CA proteins and HPV16/18 positivity in recurrent cervical HSIL patients. By examining the p16, C-myc, and PIK3CA proteins in the cervical lesion tissue of 180 HSIL recurrent patients who underwent examination in the hospital from January 2020 to December 2022, this study analyzed the relationship between p16, C-myc, and PIK3CA proteins and HPV16/18 positivity. PIK3CA expression detection found that the proportion of positive expression of p16, C-myc, and PIK3CA in HPV16/18 (+) patients was significantly higher than that in HPV16/18 (-), and the expression of HPV16/18 in HSIL patients was significantly positively correlated with p16, C-myc, and PIK3CA. Meanwhile, a prediction model F was constructed based on binary logistic regression analysis data with good fit, and through ROC curve analysis. It was found that p16, C-myc, PIK3CA, and logistic model F can effectively predict HPV16/18 (+), with model F having the best diagnostic performance.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proanthocyanidin Regulates NETosis and Inhibits the Growth and Proliferation of Liver Cancer Cells - In Vivo, In Vitro and In Silico Investigation. 原花青素调节NETosis并抑制肝癌细胞的生长和增殖--体内、体外和硅学研究。
IF 1.8 4区 生物学
Cell Biochemistry and Biophysics Pub Date : 2024-10-09 DOI: 10.1007/s12013-024-01557-6
Chenhui Wang, Wu Xia
{"title":"Proanthocyanidin Regulates NETosis and Inhibits the Growth and Proliferation of Liver Cancer Cells - In Vivo, In Vitro and In Silico Investigation.","authors":"Chenhui Wang, Wu Xia","doi":"10.1007/s12013-024-01557-6","DOIUrl":"https://doi.org/10.1007/s12013-024-01557-6","url":null,"abstract":"<p><p>Liver cancer ranks third in global cancer-related mortality, with about 700,000 deaths recorded yearly, making it one of the most common cancers worldwide. Even though prognoses differ according to the severity of the diseases, many patients now exhibit an increased life cycle since the implementation of chemotherapy. In the current study, we investigated the effect of proanthocyanidin ‒a polyphenol molecule found in many plants‒ on the proliferation and invasion of liver cancer cells. In particular, we determined the effect of proanthocyanidin on the serum levels of four strategic liver cancer target, TNFα, IL-6, cfDNA, and IL-1β. Further molecular insight on the inhibitory mechanism of proanthocyanidin against TNFα, IL-6, and IL-1β was obtained via molecular docking, molecular dynamics simulations and binding free energy calculations. Results showed that proanthocyanidin inhibited the growth of HepG2 and HEP3B cells, and effectively reduced clonogenic survival and invasion potential when compared to control cells. Proanthocyanidin was also found to suppress the expression of Bcl-2 (26 kDa) protein in HepG2 cells, while increasing the expression of Bax (21 kDa). Molecular dynamics (MD) and thermodynamic binding free energy calculations showed that proanthocyanidin maintained stable binding within the active site of target proteins across the entire 100 ns MD simulation period, and its binding affinity outscored respective control molecules.In conclusion, the multifaceted analysis showcased in this study demonstrated promising anti-cancer effect of proanthocyanidin on HepG2 and HEP3B cancer cells, highlighting its potential as a viable liver cancer therapeutic alternative.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing Phytochemicals to Regulate Catalytic Residues of Alpha-Amylase and Alpha-Glucosidase in Type 2 Diabetes. 利用植物化学物质调节 2 型糖尿病中α-淀粉酶和α-葡萄糖苷酶的催化残基。
IF 1.8 4区 生物学
Cell Biochemistry and Biophysics Pub Date : 2024-10-09 DOI: 10.1007/s12013-024-01575-4
Sivaraman Dhanasekaran, Srikanth Jeyabalan, Abbas Alam Choudhury, Vijayarangan Devi Rajeswari, Gnanasambandan Ramanathan, Tamilanban Thamaraikani, Mahendran Sekar, Vetriselvan Subramaniyan, Wong Ling Shing
{"title":"Harnessing Phytochemicals to Regulate Catalytic Residues of Alpha-Amylase and Alpha-Glucosidase in Type 2 Diabetes.","authors":"Sivaraman Dhanasekaran, Srikanth Jeyabalan, Abbas Alam Choudhury, Vijayarangan Devi Rajeswari, Gnanasambandan Ramanathan, Tamilanban Thamaraikani, Mahendran Sekar, Vetriselvan Subramaniyan, Wong Ling Shing","doi":"10.1007/s12013-024-01575-4","DOIUrl":"https://doi.org/10.1007/s12013-024-01575-4","url":null,"abstract":"<p><p>Type 2 diabetes (T2D), also known as non-insulin-dependent diabetes mellitus, represents the prevailing manifestation of diabetes, encompassing a substantial majority of cases, ~90-95%. Plant-derived antidiabetic leads are being intensively explored due to their safety and effectiveness. The main objective of the present study is to evaluate the anti-diabetic potential of the traditional formulation Karisalai Karpam through in-vitro and in-silico investigations. The in-vitro and in-silico investigation of traditional polyherbal preparation Karisalai Karpam (KK) chooranam were performed to ascertain its inhibitory potential against α-amylase and α-glucosidase enzymes along with antioxidant (DPPH and ABTS) and phytochemical analysis. The results of enzyme inhibitory activity of KK witnessed highest activity against α-glucosidase enzyme with a percentage inhibition of 84.66 ± 2.50% (IC<sub>50</sub>,187.9 ± 5.79 μg/ml) followed by moderate level of α-amylase inhibition exhibited with 72.94 ± 3.66% (IC<sub>50</sub>, 241.6 ± 9.76 μg/ml). Additionally, the strongest antioxidant activity was observed in quenching DPPH<sup>•</sup> (IC<sub>50</sub>,154.8 ± 14.53 μg/ml) and ABTS<sup>+•</sup> radicals (IC<sub>50</sub>,148.6 ± 29.74 μg/ml). The outcome of the molecular docking studies indicated that among the 17 compounds analysed, the lead such as acalyphin, apigenin, humulene, and indirubin exhibited a prominent binding affinity over the residual binding site of α-glucosidase. It's important to note that the catalytic site of the enzyme α-amylase is primarily occupied by amyrin, apigenin, arjunolic acid, β-sitosterol, geraniol, and tricetin. In conclusion, the formulation KK demonstrates robust alpha-glucosidase and alpha-amylase inhibitory activity. It's also worth noting that the formulation exhibits noteworthy antioxidant properties, which could provide additional health benefits. The binding mode and energies of the identified phytochemicals against the target enzymes further support the formulation's antidiabetic potential.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long Non-Coding RNAs in Non-Alcoholic Fatty Liver Disease; Friends or Foes? 非酒精性脂肪肝中的长非编码 RNA;是敌是友?
IF 1.8 4区 生物学
Cell Biochemistry and Biophysics Pub Date : 2024-10-08 DOI: 10.1007/s12013-024-01555-8
Sina Kalantari Soltanieh, Sahar Khastar, Irwanjot Kaur, Abhishek Kumar, Jaya Bansal, Ata Fateh, Deepak Nathiya, Beneen Husseen, Mansour Rajabivahid, Mahmoud Dehghani-Ghorbi, Reza Akhavan-Sigari
{"title":"Long Non-Coding RNAs in Non-Alcoholic Fatty Liver Disease; Friends or Foes?","authors":"Sina Kalantari Soltanieh, Sahar Khastar, Irwanjot Kaur, Abhishek Kumar, Jaya Bansal, Ata Fateh, Deepak Nathiya, Beneen Husseen, Mansour Rajabivahid, Mahmoud Dehghani-Ghorbi, Reza Akhavan-Sigari","doi":"10.1007/s12013-024-01555-8","DOIUrl":"https://doi.org/10.1007/s12013-024-01555-8","url":null,"abstract":"<p><p>Metabolic dysfunction-associated fatty liver disease (MAFLD) is a range of conditions that start with the accumulation of fat in the liver (hepatic steatosis) and can progress to more severe stages like steatohepatitis (NASH) and fibrosis without drinking alcohol. Environmental and genetic variables both contribute to MAFLD's development, with various biological processes and mediators involved at every phase. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that are not translated into protein and are over 200 nucleotides long. They can impact genes that encode protein by controlling transcriptional and post-transcriptional procedures. Dysregulation of lncRNA has been connected to several liver diseases, including MAFLD. Recent research has linked lncRNAs to MAFLD pathology in both patients and animal models. However, the roles of most lncRNAs in MAFLD pathology are still not well recognized. This review provides a comprehensive catalog of recently reported lncRNAs in the pathogenesis of MAFLD and summarizes the current knowledge of lncRNAs usage as therapeutic strategies in MAFLD, the most common liver disease. Collectively, lncRNA's targeting could potentially offer a therapeutic approach by modulating MAFLD.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
D-Xylose Ameliorates Non-Alcoholic Fatty Liver Disease by Targeting Macrophage-expressed LYZ Gene. D-木糖通过靶向巨噬细胞表达的 LYZ 基因改善非酒精性脂肪肝。
IF 1.8 4区 生物学
Cell Biochemistry and Biophysics Pub Date : 2024-10-08 DOI: 10.1007/s12013-024-01572-7
Guoxiang Liu, Sreemoy Kanti Das
{"title":"D-Xylose Ameliorates Non-Alcoholic Fatty Liver Disease by Targeting Macrophage-expressed LYZ Gene.","authors":"Guoxiang Liu, Sreemoy Kanti Das","doi":"10.1007/s12013-024-01572-7","DOIUrl":"https://doi.org/10.1007/s12013-024-01572-7","url":null,"abstract":"<p><p>This study investigates the therapeutic effects of D-Xylose, a natural sugar, on non-alcoholic fatty liver disease (NAFLD), focusing on the expression of the lysozyme gene (LYZ) in macrophages. Using the single-cell dataset GSE136103 for NAFLD, researchers analyzed macrophage populations and other groups utilizing the Seurat package in R, while a differential analysis was performed on the NAFLD dataset GSE61260 using the limma package. Both in vitro and in vivo models, including cell culture, mouse models, RT-qPCR, Western blot, ELISA, and histopathological analyses, were employed to examine the effect of D-Xylose on lipid accumulation, LYZ expression, blood lipid levels, and inflammatory responses. The study found a significant upregulation of LYZ in free fatty acid (FFA)-treated cells and mouse liver tissues, with a subsequent reduction after D-Xylose intervention. Treatment with D-Xylose and Amlodipine led to a notable decrease in lipid accumulation, as evidenced by reduced triglyceride and cholesterol levels. D-Xylose demonstrated a greater improvement in lipid metabolism than Amlodipine. Additionally, D-Xylose significantly mitigated inflammatory responses, reducing levels of inflammatory markers such as IL1R, IL6, MYS8, TNF, NF-κB, and IL-1. Furthermore, D-Xylose administration significantly reduced liver weight and liver index, with a positive impact on serum liver function and blood lipid levels. The findings suggest that D-Xylose could be a therapeutic intervention for NAFLD by targeting LYZ expression in macrophages, thereby modulating lipid metabolism and inflammatory responses.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Drug Design Approaches for the Identification of Novel Antidiabetic Compounds from Natural Resources through Molecular Docking, ADMET, and Toxicological Studies. 通过分子对接、ADMET 和毒理学研究从自然资源中鉴定新型抗糖尿病化合物的计算药物设计方法。
IF 1.8 4区 生物学
Cell Biochemistry and Biophysics Pub Date : 2024-10-08 DOI: 10.1007/s12013-024-01540-1
Bakul Akter, Md Sohorab Uddin, Mohammad Rashedul Islam, Kutub Uddin Ahamed, Most Nazmin Aktar, Mohammed Kamrul Hossain, Ahmad Mohammad Salamatullah, Mouhammed Bourhia
{"title":"Computational Drug Design Approaches for the Identification of Novel Antidiabetic Compounds from Natural Resources through Molecular Docking, ADMET, and Toxicological Studies.","authors":"Bakul Akter, Md Sohorab Uddin, Mohammad Rashedul Islam, Kutub Uddin Ahamed, Most Nazmin Aktar, Mohammed Kamrul Hossain, Ahmad Mohammad Salamatullah, Mouhammed Bourhia","doi":"10.1007/s12013-024-01540-1","DOIUrl":"https://doi.org/10.1007/s12013-024-01540-1","url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM) is usually depicted by relative insulin deficiency, raised blood glucose levels, and the predominant risk factor, insulin resistance. Hence, the development of insulin sensitizer drugs targeting PPAR-γ receptors has expanded enormous interest as an attractive choice for T2DM treatment. Thiazolidinediones (TZD) enhance insulin sensitivity either by directly functioning on gene transcription of the PPARγ receptor related to glucose homeostasis or by systemic sensitization of insulin and, therefore, improved hyperglycemia in a wide range of patients. However, severe complications and adverse effects of TZDs necessitate the development of an efficacious and reliable insulin sensitizer from alternative resources. On the contrary, Nature is a rich source of anticipated effective and safer medicine; more than fifty percent of drugs on the market are developed from natural products. Hence, searching for a new PPAR-γ agonist from bioactive secondary compounds of medicinal plants along with greater efficacy and safety is a recognized and consistent tactic for developing novel antidiabetic agents. Pulicaria jaubertii is a fragrant perennial aromatic plant with anti-inflammatory, antidiabetic, antimicrobial, antimalarial, and insecticidal properties. The current study was designed to use a computer-aided drug design to explore the best antidiabetic compounds from P. jaubertii. Herein, the molecular docking study of 80 investigated ligands against the PPAR-γ receptor identifies the highest docking score for five ligands ranging from -8.9 kcal/mol to 8.0 kcal/mol, which is also more significant than the standard drug pioglitazone (-7.7 kcal/mol) determined by the PyRx 8.0 virtual screening software. GLN286, CYS285, SER289, TYR473, MET364, ARG288, ILE341, and LEU333 residues are found to be significant contributors to the non-bonded interaction between ligands and receptors. Molecular electrostatic potential (MEP), DFT, molecular orbital (MO), ADMET, and toxicological analyses were performed on the selected five high-scored ligands of P. jaubertii. Results documented that all investigated ligands, especially L4, show considerably excellent profiles in molecular docking, MEP, DFT, MO, ADMET, and toxicological predictions, suggesting our drug-designing approaches may contribute to the development of a novel antidiabetic drug for the treatment of T2DM from natural resources.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Interleukin-24 and Downstream Pathways in Inflammatory and Autoimmune Diseases. 白细胞介素-24 及其下游通路在炎症和自身免疫性疾病中的作用
IF 1.8 4区 生物学
Cell Biochemistry and Biophysics Pub Date : 2024-10-07 DOI: 10.1007/s12013-024-01576-3
Qiyun An, Xiaoyu Gu, Yuying Jiang
{"title":"The Role of Interleukin-24 and Downstream Pathways in Inflammatory and Autoimmune Diseases.","authors":"Qiyun An, Xiaoyu Gu, Yuying Jiang","doi":"10.1007/s12013-024-01576-3","DOIUrl":"https://doi.org/10.1007/s12013-024-01576-3","url":null,"abstract":"<p><p>Inflammatory and autoimmune diseases are pathological immune disorders and pose significant public health challenges due to their impact on individuals and society. Cytokine dysregulation plays a critical role in the development of these disorders. Interleukin (IL)-24, a member of the IL-10 cytokine family, can be secreted by various cell types, including immune and non-immune cells. The downstream effects of IL-24 upon binding to its receptors can occur in dependence on, or independently of, the Janus kinase (JAK)/signal transducer and the activator of transcription (STAT) signaling pathway. IL-24 and its downstream pathways influence crucial processes such as cell differentiation, proliferation, apoptosis, and inflammation, with its role varying across different diseases. On the one hand, IL-24 can inhibit the activation of pathogenic cells and autoimmune responses in autoimmune ocular diseases; on the other hand, IL-24 has been also implicated in promoting tissue damage by fostering immune cell activation and infiltration in psoriasis and allergic diseases. It suggests that IL-24, as a multifunctional cytokine, has complex regulatory functions in immune cells and related diseases. In this paper, we summarize the current knowledge on IL-24's immunomodulatory actions and its involvement in inflammatory and autoimmune disorders. Such insights may pave the way for novel therapeutic strategies for these diseases.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Fuzzy Modelling Approach to Analyze Neuronal Calcium Dynamics With Intracellular Fluxes. 利用细胞内通量分析神经元钙动力学的计算模糊建模方法
IF 1.8 4区 生物学
Cell Biochemistry and Biophysics Pub Date : 2024-10-07 DOI: 10.1007/s12013-024-01541-0
Rituparna Bhattacharyya, Brajesh Kumar Jha
{"title":"Computational Fuzzy Modelling Approach to Analyze Neuronal Calcium Dynamics With Intracellular Fluxes.","authors":"Rituparna Bhattacharyya, Brajesh Kumar Jha","doi":"10.1007/s12013-024-01541-0","DOIUrl":"https://doi.org/10.1007/s12013-024-01541-0","url":null,"abstract":"<p><p>Mathematical neuroscience investigates how calcium distribution in nerve cells affects the neurological system. The interaction of numerous systems is necessary for the operation of several cellular processes in neuron cells, such as calcium, buffer, ER etc. The dynamics of interacting parameters give useful information on neural cell function. This work uses a mathematical model to analyze the dynamic interactions of buffer and ER inside neurons, considering their spatial properties. While buffers bind to calcium ions and lower their concentration, the endoplasmic reticulum (ER) serves as a reservoir, holding a significant number of free calcium ions. The uncertainty of initial values of calcium concentration poses challenges for researchers to develop calcium signaling models. In this article, we examined the exact solution and approximate solution of the mathematical model that was analyzed using the fuzzy undetermined coefficient approach. MATLAB is being used to perform the simulation. Endoplasmic reticulum and buffer have been found to have a substantial impact on calcium signaling. Fuzzy differential equation Provides a useful tool for evaluating complicated processes with imprecise values when ordinary differential equations perform not precisely. They allow for the examination of dynamic processes under fuzzy settings, which contributes to advances research.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信