The Activation of the CCND1 Promoter by AP-1 and SOX Transcription Factors in PC3 Prostate Cancer Cells Can Be Prevented by Anacardic Acid Analogs.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Manon Brunie, Mika A Robichaud, Mohamed Touaibia, Luc J Martin
{"title":"The Activation of the CCND1 Promoter by AP-1 and SOX Transcription Factors in PC3 Prostate Cancer Cells Can Be Prevented by Anacardic Acid Analogs.","authors":"Manon Brunie, Mika A Robichaud, Mohamed Touaibia, Luc J Martin","doi":"10.1007/s12013-024-01646-6","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting more than one in nine men before age 70, prostate cancer is the most common type of cancer in men. The increased levels of cyclins, leading to activation of cyclin-dependent kinases (CDKs), play a critical role in the increased proliferation of prostate cancer cells. In this study, the regulation of the cyclin D1 (CCND1) promoter activity by activator protein-1 (AP-1) and SRY-related HMG-box (SOX) transcription factors has been characterized in PC3 prostate cancer cells. The SOX and AP-1 transcription factors can cooperate to activate the CCND1 promoter in PC3 prostate cancer cells and such cooperation can be enhanced by protein kinase A (PKA) and/or mitogen-activated protein kinase kinase 1 (ERK kinase 1, MAP2K1) signaling pathways. Moreover, anacardic acid analogs have been assessed for their potential in reducing cell viability and CCND1 promoter activity. The anacardic acid analog 8b, obtained from γ-resorcylic acid, reduces the viability and proliferation of PC3 cells by decreasing CCND1 promoter activity. The effect of analog 8b, which perfectly mimics the structure of anacardic acid, can be attributed to the inhibition of the activities of the transcription factors SOX and AP-1, which are important regulators of CCND1 promoter activity in prostate cancer cells.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01646-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Targeting more than one in nine men before age 70, prostate cancer is the most common type of cancer in men. The increased levels of cyclins, leading to activation of cyclin-dependent kinases (CDKs), play a critical role in the increased proliferation of prostate cancer cells. In this study, the regulation of the cyclin D1 (CCND1) promoter activity by activator protein-1 (AP-1) and SRY-related HMG-box (SOX) transcription factors has been characterized in PC3 prostate cancer cells. The SOX and AP-1 transcription factors can cooperate to activate the CCND1 promoter in PC3 prostate cancer cells and such cooperation can be enhanced by protein kinase A (PKA) and/or mitogen-activated protein kinase kinase 1 (ERK kinase 1, MAP2K1) signaling pathways. Moreover, anacardic acid analogs have been assessed for their potential in reducing cell viability and CCND1 promoter activity. The anacardic acid analog 8b, obtained from γ-resorcylic acid, reduces the viability and proliferation of PC3 cells by decreasing CCND1 promoter activity. The effect of analog 8b, which perfectly mimics the structure of anacardic acid, can be attributed to the inhibition of the activities of the transcription factors SOX and AP-1, which are important regulators of CCND1 promoter activity in prostate cancer cells.

ap1和SOX转录因子在PC3前列腺癌细胞中激活CCND1启动子可被无心脏酸类似物阻止。
前列腺癌是男性中最常见的癌症类型,在70岁以下的男性中,超过九分之一的人患有前列腺癌。细胞周期蛋白水平升高,导致细胞周期蛋白依赖性激酶(CDKs)的激活,在前列腺癌细胞增殖增加中起关键作用。本研究发现,激活蛋白1 (AP-1)和sry相关的HMG-box (SOX)转录因子在PC3前列腺癌细胞中调控cyclin D1 (CCND1)启动子活性。在PC3前列腺癌细胞中,SOX和AP-1转录因子可以协同激活CCND1启动子,这种协同作用可以通过蛋白激酶A (PKA)和/或丝裂原活化蛋白激酶1 (ERK激酶1,MAP2K1)信号通路增强。此外,研究人员还评估了心肌酸类似物在降低细胞活力和CCND1启动子活性方面的潜力。从γ-间环酸中获得的心脏酸类似物8b通过降低CCND1启动子活性来降低PC3细胞的活力和增殖。类似物8b完美地模拟了无心酸的结构,其作用可归因于抑制转录因子SOX和AP-1的活性,这两个转录因子是前列腺癌细胞中CCND1启动子活性的重要调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信