Drug Resistance Updates最新文献

筛选
英文 中文
Wip1 phosphatase activator QGC-8–52 specifically sensitizes p53-negative cancer cells to chemotherapy while protecting normal cells Wip1磷酸酶激活剂QGC-8-52特异性地使p53阴性癌细胞对化疗增敏,同时保护正常细胞。
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-12-24 DOI: 10.1016/j.drup.2024.101196
Ke Wu , Xiao-xiao Ge , Xiao-fan Duan , Jie-qing Li , Kun Wang , Qiao-Hong Chen , Zhi-min Huang , Wei-yan Zhang , Yong Wu , Qun Li
{"title":"Wip1 phosphatase activator QGC-8–52 specifically sensitizes p53-negative cancer cells to chemotherapy while protecting normal cells","authors":"Ke Wu ,&nbsp;Xiao-xiao Ge ,&nbsp;Xiao-fan Duan ,&nbsp;Jie-qing Li ,&nbsp;Kun Wang ,&nbsp;Qiao-Hong Chen ,&nbsp;Zhi-min Huang ,&nbsp;Wei-yan Zhang ,&nbsp;Yong Wu ,&nbsp;Qun Li","doi":"10.1016/j.drup.2024.101196","DOIUrl":"10.1016/j.drup.2024.101196","url":null,"abstract":"<div><div>PP2C serine-threonine phosphatase Wip1 plays an important role in normal tissue homeostasis, stress signaling and pathogenesis of various human diseases. It is an attractive drug target for cancer treatment and inhibition of its expression or activity constitute a novel therapeutic intervention strategy to prevent the development of various cancers. However, previous strategies for Wip1 suppression may be ineffective in cancers lacking p53. Here, we have characterized the activity of a novel Wip1 phosphatase activator, QGC-8–52, in preclinical models of breast malignancies. QGC-8–52 significantly sensitizes the cancer cell lines with p53 deletion to chemotherapeutic agents. This effect was mediated by the Wip1-FOXO3a interaction and subsequent dephosphorylation of Thr487 that resulted, in response to anticancer treatment, in enhancing the transcription activity of FOXO3a on the proapoptotic <em>TRAIL</em> gene. The sensitizing effect of Wip1 activation on chemotherapeutic drugs only targeted cancer cells lacking p53. The activation of Wip1 in normal cells provided protection from anticancer drug-induced apoptosis by reducing the strength of upstream signaling to p53. Therefore, during the treatment of anticancer drugs, the activated Wip1 phosphatase boosts the apoptosis of p53-negative tumors and protects normal tissues. Our findings may represent an effective and safe therapeutic strategy for cancers with p53 deletion.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"79 ","pages":"Article 101196"},"PeriodicalIF":15.8,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WITHDRAWN: Low miR-224-5p in exosomes confers colorectal cancer 5-FU resistance by upregulating S100A4 外泌体中的低miR-224-5p通过上调S100A4赋予结直肠癌5-FU抗性
IF 24.3 1区 医学
Drug Resistance Updates Pub Date : 2024-12-16 DOI: 10.1016/j.drup.2024.101193
Yan-yan Yan, Zhuo-fen Deng, Xing-tao Wu, Yu Lu, Zhuang-yan Zhu, Qing Wen, Wei Zhang, Hai-yan Zhang, Xin-zhu Chen, Yu-song Wu, Xue-bing He, Zi-ang Ma, Jin-shuo Li, Hong Bi, Jian-ye Zhang
{"title":"WITHDRAWN: Low miR-224-5p in exosomes confers colorectal cancer 5-FU resistance by upregulating S100A4","authors":"Yan-yan Yan, Zhuo-fen Deng, Xing-tao Wu, Yu Lu, Zhuang-yan Zhu, Qing Wen, Wei Zhang, Hai-yan Zhang, Xin-zhu Chen, Yu-song Wu, Xue-bing He, Zi-ang Ma, Jin-shuo Li, Hong Bi, Jian-ye Zhang","doi":"10.1016/j.drup.2024.101193","DOIUrl":"https://doi.org/10.1016/j.drup.2024.101193","url":null,"abstract":"","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"4 1","pages":""},"PeriodicalIF":24.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association of idealized amphiphiles and protease inhibitors: Conferring antimicrobial peptides with stable antibacterial activity under physiological conditions to combat multidrug-resistant bacteria 理想的两亲体和蛋白酶抑制剂的关联:赋予抗菌肽在生理条件下具有稳定的抗菌活性,以对抗多重耐药细菌。
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-12-09 DOI: 10.1016/j.drup.2024.101183
Yongjie Zhu , Bowen Li , Wanying Xu, Yuanmengxue Wang, Guoyu Li, Chongpeng Bi, Anshan Shan, Changxuan Shao
{"title":"Association of idealized amphiphiles and protease inhibitors: Conferring antimicrobial peptides with stable antibacterial activity under physiological conditions to combat multidrug-resistant bacteria","authors":"Yongjie Zhu ,&nbsp;Bowen Li ,&nbsp;Wanying Xu,&nbsp;Yuanmengxue Wang,&nbsp;Guoyu Li,&nbsp;Chongpeng Bi,&nbsp;Anshan Shan,&nbsp;Changxuan Shao","doi":"10.1016/j.drup.2024.101183","DOIUrl":"10.1016/j.drup.2024.101183","url":null,"abstract":"<div><h3>Aims</h3><div>The unstable antimicrobial activity of antimicrobial peptides (AMPs) under physiological conditions (especially the degradation instigated proteases) seems to be a persistent impediment for their successful implementation in clinical trials. Consequently, our objective was to devise AMP engineering frameworks that could sustain robust antibacterial efficacy within physiological environments.</div></div><div><h3>Methods</h3><div>In this work, we harvested AMPs with stable antimicrobial activity under the physiological barriers through the combination of idealized amphiphiles and trypsin inhibitors.</div></div><div><h3>Results</h3><div>We screened and identified the lead peptides IK3-A and IK3-S, which showed potent activity against Gram-negative bacteria, including multidrug-resistant (MDR) bacteria, and exhibited promising biocompatibility with mammalian cells. Remarkably, IK3-A and IK3-S maintained sustained antibacterial potency under physiological salts, serum, and protease conditions. Furthermore, both IK3-A and IK3-S kill Gram-negative bacteria by attacking the bacterial cell membrane and inducing oxidative damage (at high concentrations). Crucially, IK3-A and IK3-S have optimal safety and efficacy in mice.</div></div><div><h3>Conclusions</h3><div>This is the first work to compare the effects of different trypsin inhibitors on the resistance of AMPs to protease hydrolysis on the same sequence platform. In conclusion, these findings provide guidance for the molecular design of AMPs with stable antibacterial activity under physiological conditions and facilitates the process of clinical translation of AMPs as antimicrobial biomaterials against MDR bacteria. Moreover, this may stimulate a more general interest in protease inhibitors as molecular scaffolds in the creation of highly stable peptide-based biomaterials.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"79 ","pages":"Article 101183"},"PeriodicalIF":15.8,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why and how citrate may sensitize malignant tumors to immunotherapy 柠檬酸盐为何以及如何使恶性肿瘤对免疫疗法敏感
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-11-26 DOI: 10.1016/j.drup.2024.101177
Philippe Icard , Mathilde Prieto , Antoine Coquerel , Ludovic Fournel , Joseph Gligorov , Johanna Noel , Adrien Mouren , Anthony Dohan , Marco Alifano , Luca Simula
{"title":"Why and how citrate may sensitize malignant tumors to immunotherapy","authors":"Philippe Icard ,&nbsp;Mathilde Prieto ,&nbsp;Antoine Coquerel ,&nbsp;Ludovic Fournel ,&nbsp;Joseph Gligorov ,&nbsp;Johanna Noel ,&nbsp;Adrien Mouren ,&nbsp;Anthony Dohan ,&nbsp;Marco Alifano ,&nbsp;Luca Simula","doi":"10.1016/j.drup.2024.101177","DOIUrl":"10.1016/j.drup.2024.101177","url":null,"abstract":"<div><div>Immunotherapy, either alone or in combination with chemotherapy, has demonstrated limited efficacy in a variety of solid cancers. Several factors contribute to explaining primary or secondary resistance. Among them, cancer cells, whose metabolism frequently relies on aerobic glycolysis, promote exhaustion of cytotoxic immune cells by diverting the glucose in the tumor microenvironment (TME) to their own profit, while secreting lactic acid that sustains the oxidative metabolism of immunosuppressive cells. Here, we propose to combine current treatment based on the use of immune checkpoint inhibitors (ICIs) with high doses of sodium citrate (SCT) because citrate inhibits cancer cell metabolism (by targeting both glycolysis and oxidative metabolism) and may active anti-tumor immune response. Indeed, as showed in preclinical studies, SCT reduces cancer cell growth, promoting cell death and chemotherapy effectiveness. Furthermore, since the plasma membrane citrate carrier pmCIC is mainly expressed in cancer cells and low or not expressed in immune and non-transformed cells, we argue that the inhibition of cancer cell metabolism by SCT may increase glucose availability in the TME, thus promoting functionality of anti-tumor immune cells. Concomitantly, the decrease in the amount of lactic acid in the TME may reduce the functionality of immunosuppressive cells. Preclinical studies have shown that SCT can enhance the anti-tumor immune response through an enhancement of T cell infiltration and activation, and a repolarization of macrophages towards a TAM1-like phenotype. Therefore, this simple and cheap strategy may have a major impact to increase the efficacy of current immunotherapies in human solid tumors and we encourage testing it in clinical trials.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"78 ","pages":"Article 101177"},"PeriodicalIF":15.8,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blockade of purine metabolism reverses macrophage immunosuppression and enhances anti-tumor immunity in non-small cell lung cancer 阻断嘌呤代谢可逆转巨噬细胞免疫抑制,增强非小细胞肺癌的抗肿瘤免疫力
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-11-23 DOI: 10.1016/j.drup.2024.101175
Li Yang , Aitian Li , Weina Yu , Huishang Wang , Lei Zhang , Dan Wang , Ying Wang , Ru Zhang , Qingyang Lei , Zhangnan Liu , Shanshan Zhen , Haiming Qin , Yaqing Liu , Yang Yang , Xian-Lu Song , Yi Zhang
{"title":"Blockade of purine metabolism reverses macrophage immunosuppression and enhances anti-tumor immunity in non-small cell lung cancer","authors":"Li Yang ,&nbsp;Aitian Li ,&nbsp;Weina Yu ,&nbsp;Huishang Wang ,&nbsp;Lei Zhang ,&nbsp;Dan Wang ,&nbsp;Ying Wang ,&nbsp;Ru Zhang ,&nbsp;Qingyang Lei ,&nbsp;Zhangnan Liu ,&nbsp;Shanshan Zhen ,&nbsp;Haiming Qin ,&nbsp;Yaqing Liu ,&nbsp;Yang Yang ,&nbsp;Xian-Lu Song ,&nbsp;Yi Zhang","doi":"10.1016/j.drup.2024.101175","DOIUrl":"10.1016/j.drup.2024.101175","url":null,"abstract":"<div><h3>Aims</h3><div>Immune checkpoint blockade therapy is not effective in most patients with non-small cell lung cancer (NSCLC) due to the immunosuppressive tumor microenvironment. Macrophages are key components of tumor-infiltrating immune cells and play a critical role in immunosuppression, which can be mediated by cell-intrinsic metabolism. This study aimed to evaluate whether macrophages regulate NSCLC progression through metabolic crosstalk with cancer cells and affect immunotherapy efficacy.</div></div><div><h3>Methods</h3><div>The macrophage landscape of NSCLC tissues were analyzed by single-cell sequencing and verified through flow cytometry and immunofluorescence. Multiplex assay, single-cell sequencing data, ELISA, immunofluorescence, and RNA-seq et al. were used to investigate and verify the mechanism of macrophage-mediated metabolic regulation on immunosuppression. The tumor-bearing model was established in C57BL/6 J mice to explore in vivo efficacy.</div></div><div><h3>Results</h3><div>We found that tumor tissue-derived macrophages exhibited an anti-inflammatory phenotype and had a prognostic value for NSCLC. NSCLC cell-secreted CXCL8 recruited macrophages from peritumor tissues to tumor sites and promoted programmed death-ligand 1 (PD-L1) expression by activating purine metabolism with increasing xanthine dehydrogenase and uric acid production. Moreover, purine metabolism-mediated macrophage immunosuppression was dependent on NLRP3/caspase-1/IL-1β signaling. Blockade of purine metabolism signaling enhanced anti-tumor immunity and the efficacy of anti-PD-L1 therapy.</div></div><div><h3>Conclusions</h3><div>Collectively, our findings reveal a key role of purine metabolism in macrophage immunosuppression and suggest that blockade of purine metabolism combined with immune checkpoint blockade could provide synergistic effects in NSCLC treatment.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"78 ","pages":"Article 101175"},"PeriodicalIF":15.8,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-translational modifications in drug resistance 抗药性中的翻译后修饰
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-11-21 DOI: 10.1016/j.drup.2024.101173
Chenggui Miao , Yurong Huang , Cheng Zhang , Xiao Wang , Bing Wang , Xinyue Zhou , Yingqiu Song , Peng Wu , Zhe-Sheng Chen , Yibin Feng
{"title":"Post-translational modifications in drug resistance","authors":"Chenggui Miao ,&nbsp;Yurong Huang ,&nbsp;Cheng Zhang ,&nbsp;Xiao Wang ,&nbsp;Bing Wang ,&nbsp;Xinyue Zhou ,&nbsp;Yingqiu Song ,&nbsp;Peng Wu ,&nbsp;Zhe-Sheng Chen ,&nbsp;Yibin Feng","doi":"10.1016/j.drup.2024.101173","DOIUrl":"10.1016/j.drup.2024.101173","url":null,"abstract":"<div><div>Resistance to antitumor drugs, antimicrobial drugs, and antiviral drugs severely limits treatment effectiveness and cure rate of diseases. Protein post-translational modifications (PTMs) represented by glycosylation, ubiquitination, SUMOylation, acetylation, phosphorylation, palmitoylation, and lactylation are closely related to drug resistance. PTMs are typically achieved by adding sugar chains (glycosylation), small proteins (ubiquitination), lipids (palmitoylation), or functional groups (lactylation) to amino acid residues. These covalent additions are usually the results of signaling cascades and could be reversible, with the triggering mechanisms depending on the type of modifications. PTMs are involved in antitumor drug resistance, not only as inducers of drug resistance but also as targets for reversing drug resistance. Bacteria exhibit multiple PTMs-mediated antimicrobial drug resistance. PTMs allow viral proteins and host cell proteins to form complex interaction networks, inducing complex antiviral drug resistance. This review summarizes the important roles of PTMs in drug resistance, providing new ideas for exploring drug resistance mechanisms, developing new drug targets, and guiding treatment plans.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"78 ","pages":"Article 101173"},"PeriodicalIF":15.8,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-driven visualization tool for analyzing data and predicting drug-resistant outbreaks 人工智能驱动的可视化工具,用于分析数据和预测耐药性爆发。
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-11-19 DOI: 10.1016/j.drup.2024.101174
Yoshiyasu Takefuji
{"title":"AI-driven visualization tool for analyzing data and predicting drug-resistant outbreaks","authors":"Yoshiyasu Takefuji","doi":"10.1016/j.drup.2024.101174","DOIUrl":"10.1016/j.drup.2024.101174","url":null,"abstract":"<div><div>A tool was developed to identify potential disease outbreaks using pathogen and serotype data. By analyzing isolate numbers and comparing them to a two-year average, the tool highlights anomalies suggestive of outbreaks. When applied to Salmonella data, it revealed potential outbreaks related to specific serotypes.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"78 ","pages":"Article 101174"},"PeriodicalIF":15.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autophagy in cancer development, immune evasion, and drug resistance 癌症发展、免疫逃避和抗药性中的自噬作用
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-11-15 DOI: 10.1016/j.drup.2024.101170
Xuegang Niu , Qi You , Kaijian Hou , Yu Tian , Penghui Wei , Yang Zhu , Bin Gao , Milad Ashrafizadeh , Amir Reza Aref , Alireza Kalbasi , Israel Cañadas , Gautam Sethi , Vinay Tergaonkar , Lingzhi Wang , Yuanxiang Lin , Dezhi Kang , Daniel J. Klionsky
{"title":"Autophagy in cancer development, immune evasion, and drug resistance","authors":"Xuegang Niu ,&nbsp;Qi You ,&nbsp;Kaijian Hou ,&nbsp;Yu Tian ,&nbsp;Penghui Wei ,&nbsp;Yang Zhu ,&nbsp;Bin Gao ,&nbsp;Milad Ashrafizadeh ,&nbsp;Amir Reza Aref ,&nbsp;Alireza Kalbasi ,&nbsp;Israel Cañadas ,&nbsp;Gautam Sethi ,&nbsp;Vinay Tergaonkar ,&nbsp;Lingzhi Wang ,&nbsp;Yuanxiang Lin ,&nbsp;Dezhi Kang ,&nbsp;Daniel J. Klionsky","doi":"10.1016/j.drup.2024.101170","DOIUrl":"10.1016/j.drup.2024.101170","url":null,"abstract":"<div><div>Macroautophagy/autophagy is a highly conserved evolutionary mechanism involving lysosomes for the degradation of cytoplasmic components including organelles. The constitutive, basal level of autophagy is fundamental for preserving cellular homeostasis; however, alterations in autophagy can cause disease pathogenesis, including cancer. The role of autophagy in cancer is particularly complicated, since this process acts both as a tumor suppressor in precancerous stages but facilitates tumor progression during carcinogenesis and later stages of cancer progression. This shift between anti-tumor and pro-tumor roles may be influenced by genetic and environmental factors modulating key pathways such as those involving autophagy-related proteins, the PI3K-AKT-MTOR axis, and AMPK, which often show dysregulation in tumors. Autophagy regulates various cellular functions, including metabolism of glucose, glutamine, and lipids, cell proliferation, metastasis, and several types of cell death (apoptosis, ferroptosis, necroptosis and immunogenic cell death). These multifaceted roles demonstrate the potential of autophagy to affect DNA damage repair, cell death pathways, proliferation and survival, which are critical in determining cancer cells’ response to chemotherapy. Therefore, targeting autophagy pathways presents a promising strategy to combat chemoresistance, as one of the major reasons for the failure in cancer patient treatment. Furthermore, autophagy modulates immune evasion and the function of immune cells such as T cells and dendritic cells, influencing the tumor microenvironment and cancer’s biological behavior. However, the therapeutic targeting of autophagy is complex due to its dual role in promoting survival and inducing cell death in cancer cells, highlighting the need for strategies that consider both the beneficial and detrimental effects of autophagy modulation in cancer therapy. Hence, both inducers and inhibitors of autophagy have been introduced for the treatment of cancer. This review emphasizes the intricate interplay between autophagy, tumor biology, and immune responses, offering insights into potential therapeutic approaches that deploy autophagy in the cancer suppression.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"78 ","pages":"Article 101170"},"PeriodicalIF":15.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the epidemiologic impact of age-targeted vaccination for drug-resistant tuberculosis 针对抗药性结核病的年龄目标疫苗接种的流行病学影响建模。
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-11-13 DOI: 10.1016/j.drup.2024.101172
Pei-Yao Zhai , Zhi-Xian Chen , Ting Jiang , Jian Feng , Bin Zhang , Xiao Zang , Yan-Lin Zhao , Gang Qin
{"title":"Modeling the epidemiologic impact of age-targeted vaccination for drug-resistant tuberculosis","authors":"Pei-Yao Zhai ,&nbsp;Zhi-Xian Chen ,&nbsp;Ting Jiang ,&nbsp;Jian Feng ,&nbsp;Bin Zhang ,&nbsp;Xiao Zang ,&nbsp;Yan-Lin Zhao ,&nbsp;Gang Qin","doi":"10.1016/j.drup.2024.101172","DOIUrl":"10.1016/j.drup.2024.101172","url":null,"abstract":"<div><div>This study used a calibrated mathematical model to evaluate age-specific tuberculosis (TB) vaccination strategies, for drug-resistant (DR)-TB management in China. Prioritizing elderly vaccination significantly reduced multidrug-resistant or rifampicin-resistant TB incidence and mortality, while avoiding the need for second-line treatment, offering a promising approach to mitigate DR-TB burden by 2050.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"78 ","pages":"Article 101172"},"PeriodicalIF":15.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zebrafish patient-derived xenograft system for predicting carboplatin resistance and metastasis of ovarian cancer 用于预测卡铂耐药性和卵巢癌转移的斑马鱼患者衍生异种移植系统
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-11-09 DOI: 10.1016/j.drup.2024.101162
Feifeng Song , Xiaofen Yi , Xiaowei Zheng , Zhentao Zhang , Linqian Zhao , Yan Shen , Ye Zhi , Ting Liu , Xiaozhen Liu , Tong Xu , Xiaoping Hu , Yiwen Zhang , Huafeng Shou , Ping Huang
{"title":"Zebrafish patient-derived xenograft system for predicting carboplatin resistance and metastasis of ovarian cancer","authors":"Feifeng Song ,&nbsp;Xiaofen Yi ,&nbsp;Xiaowei Zheng ,&nbsp;Zhentao Zhang ,&nbsp;Linqian Zhao ,&nbsp;Yan Shen ,&nbsp;Ye Zhi ,&nbsp;Ting Liu ,&nbsp;Xiaozhen Liu ,&nbsp;Tong Xu ,&nbsp;Xiaoping Hu ,&nbsp;Yiwen Zhang ,&nbsp;Huafeng Shou ,&nbsp;Ping Huang","doi":"10.1016/j.drup.2024.101162","DOIUrl":"10.1016/j.drup.2024.101162","url":null,"abstract":"<div><h3>Aims</h3><div>Ovarian cancer (OC) remains a significant challenge in oncology due to high rates of drug resistance and disease relapse following standard treatment with surgery and platinum-based chemotherapy. Despite the widespread use of these treatments, no effective biomarkers currently exist to identify which patients will respond favorably to therapy. This study introduces a zebrafish patient-derived xenograft (PDX) system, capable of replicating both the carboplatin response and metastatic behavior observed in OC patients, within a rapid 3-day assay period.</div></div><div><h3>Methods</h3><div>Two OC cell lines: carboplatin-sensitive (A2780) and resistant (OVCAR8) were used to assess differential responses to treatment in murine and zebrafish xenograft models. Tumor tissues from 16 OC patients were implanted into zebrafish embryos to test carboplatin responses and predict metastasis. Additionally, eight clinical OC samples were directly implanted into zebrafish embryos as part of a proof-of-concept demonstration.</div></div><div><h3>Results</h3><div>The zebrafish xenografts accurately reflected the carboplatin sensitivity and resistance patterns seen in <em>in vitro</em> and murine models. The zebrafish PDX model demonstrated a 67 % success rate for implantation and a 100 % success rate for engraftment. Notably, the model effectively distinguished between metastatic and non-metastatic disease, with an area under the ROC curve (AUC) of 0.818. Furthermore, the zebrafish PDX model showed a high concordance with patient-specific responses to carboplatin.</div></div><div><h3>Conclusions</h3><div>This zebrafish PDX model offers a fast, accurate, and clinically relevant platform for evaluating carboplatin response and predicting metastasis in OC patients. It holds significant potential for advancing personalized medicine, allowing for more precise therapeutic outcome predictions and individualized treatment strategies.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"78 ","pages":"Article 101162"},"PeriodicalIF":15.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信