Drug Resistance Updates最新文献

筛选
英文 中文
Breaking the barrier: Epigenetic strategies to combat platinum resistance in colorectal cancer 打破障碍:抗击结直肠癌铂类抗药性的表观遗传学策略。
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-09-28 DOI: 10.1016/j.drup.2024.101152
Shiwen Luo , Ming Yue , Dequan Wang , Yukang Lu , Qingming Wu , Jue Jiang
{"title":"Breaking the barrier: Epigenetic strategies to combat platinum resistance in colorectal cancer","authors":"Shiwen Luo ,&nbsp;Ming Yue ,&nbsp;Dequan Wang ,&nbsp;Yukang Lu ,&nbsp;Qingming Wu ,&nbsp;Jue Jiang","doi":"10.1016/j.drup.2024.101152","DOIUrl":"10.1016/j.drup.2024.101152","url":null,"abstract":"<div><div>Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Platinum-based drugs, such as cisplatin and oxaliplatin, are frontline chemotherapy for CRC, effective in both monotherapy and combination regimens. However, the clinical efficacy of these treatments is often undermined by the development of drug resistance, a significant obstacle in cancer therapy. In recent years, epigenetic alterations have been recognized as key players in the acquisition of resistance to platinum drugs. Targeting these dysregulated epigenetic mechanisms with small molecules represents a promising therapeutic strategy. This review explores the complex relationship between epigenetic changes and platinum resistance in CRC, highlighting current epigenetic therapies and their effectiveness in countering resistance mechanisms. By elucidating the epigenetic underpinnings of platinum resistance, this review aims to contribute to ongoing efforts to improve treatment outcomes for CRC patients.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101152"},"PeriodicalIF":15.8,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prophylactic use of antibiotics – A strategy with unforeseen risks? 预防性使用抗生素--一种具有不可预见风险的策略?
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-09-27 DOI: 10.1016/j.drup.2024.101155
Jan Rupp , Claudia Bozzaro , Hinrich Schulenburg
{"title":"Prophylactic use of antibiotics – A strategy with unforeseen risks?","authors":"Jan Rupp ,&nbsp;Claudia Bozzaro ,&nbsp;Hinrich Schulenburg","doi":"10.1016/j.drup.2024.101155","DOIUrl":"10.1016/j.drup.2024.101155","url":null,"abstract":"","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101155"},"PeriodicalIF":15.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emergence of novel Klebsiella pneumoniae ST types with multidrug resistance in clinic 临床中出现具有耐多药能力的新型肺炎克雷伯菌 ST 型
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-09-23 DOI: 10.1016/j.drup.2024.101153
Zhenghao Lou , Xiaolu Yang , Yu Yang, Kexin Guo, Lu Gong, Hao Xu, Beiwen Zheng, Wenhong Liu, Mantao Chen, Xiawei Jiang
{"title":"Emergence of novel Klebsiella pneumoniae ST types with multidrug resistance in clinic","authors":"Zhenghao Lou ,&nbsp;Xiaolu Yang ,&nbsp;Yu Yang,&nbsp;Kexin Guo,&nbsp;Lu Gong,&nbsp;Hao Xu,&nbsp;Beiwen Zheng,&nbsp;Wenhong Liu,&nbsp;Mantao Chen,&nbsp;Xiawei Jiang","doi":"10.1016/j.drup.2024.101153","DOIUrl":"10.1016/j.drup.2024.101153","url":null,"abstract":"","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101153"},"PeriodicalIF":15.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
O-GlcNAcylation regulation of RIPK1-dependent apoptosis dictates sensitivity to sunitinib in renal cell carcinoma O-GlcNAcylation 对 RIPK1 依赖性细胞凋亡的调控决定了肾细胞癌对舒尼替尼的敏感性
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-09-12 DOI: 10.1016/j.drup.2024.101150
Xiangbo Zeng , Zhiliang Chen , Yuanchao Zhu , Lei Liu , Zhiyong Zhang , Yongyuan Xiao , Qiong Wang , Shiyu Pang , Fengjin Zhao , Bihong Xu , Mengxin Leng , Xiaocen Liu , Chenxi Hu , Siying Zeng , Fei Li , Wenlian Xie , Wanlong Tan , Zaosong Zheng
{"title":"O-GlcNAcylation regulation of RIPK1-dependent apoptosis dictates sensitivity to sunitinib in renal cell carcinoma","authors":"Xiangbo Zeng ,&nbsp;Zhiliang Chen ,&nbsp;Yuanchao Zhu ,&nbsp;Lei Liu ,&nbsp;Zhiyong Zhang ,&nbsp;Yongyuan Xiao ,&nbsp;Qiong Wang ,&nbsp;Shiyu Pang ,&nbsp;Fengjin Zhao ,&nbsp;Bihong Xu ,&nbsp;Mengxin Leng ,&nbsp;Xiaocen Liu ,&nbsp;Chenxi Hu ,&nbsp;Siying Zeng ,&nbsp;Fei Li ,&nbsp;Wenlian Xie ,&nbsp;Wanlong Tan ,&nbsp;Zaosong Zheng","doi":"10.1016/j.drup.2024.101150","DOIUrl":"10.1016/j.drup.2024.101150","url":null,"abstract":"<div><p>Receptor interacting protein kinase 1 (RIPK1) has emerged as a key regulatory molecule that influences the balance between cell death and cell survival. Under external stress, RIPK1 determines whether a cell undergoes RIPK-dependent apoptosis (RDA) or survives by activating NF-κB signaling. However, the role and mechanisms of RIPK1 on sunitinib sensitivity in renal cell carcinoma (RCC) remain elusive. In this study, we demonstrated that the O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) of RIPK1 induces sunitinib resistance in RCC by inhibiting RDA. O-GlcNAc transferase (OGT) specifically interacts with RIPK1 through its tetratricopeptide repeats (TPR) domain and facilitates RIPK1 O-GlcNAcylation. The O-GlcNAcylation of RIPK1 at Ser<sup>331</sup>, Ser<sup>440</sup> and Ser<sup>669</sup> regulates RIPK1 ubiquitination and the formation of the RIPK1/FADD/Caspase-8 complex, thereby inhibiting sunitinib-induced RDA in RCC. Site-specific depletion of O-GlcNAcylation on RIPK1 affects the formation of the RIPK1/FADD/Caspase 8 complex, leading to increased sunitinib sensitivity in RCC.</p><p>Our data highlight the significance of aberrant RIPK1 O-GlcNAcylation in the development of sunitinib resistance and indicate that targeting RIPK1 O-GlcNAcylation could be a promising therapeutic strategy for RCC.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101150"},"PeriodicalIF":15.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CYP1B1 promotes PARPi-resistance via histone H1.4 interaction and increased chromatin accessibility in ovarian cancer CYP1B1 通过组蛋白 H1.4 相互作用和染色质可及性的增加促进卵巢癌的 PARPi- 抗性
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-09-12 DOI: 10.1016/j.drup.2024.101151
Yite Xue , Taotao Yin , Shuo Yuan , Lingfang Wang , Hui Lin , Tianzhe Jin , Ruiyi Xu , Jiaxin Gu , Shizhen Shen , Xiaojing Chen , Zhuoye Chen , Ni Sima , Lifeng Chen , Weiguo Lu , Xiao Li , Xiaodong Cheng , Hui Wang
{"title":"CYP1B1 promotes PARPi-resistance via histone H1.4 interaction and increased chromatin accessibility in ovarian cancer","authors":"Yite Xue ,&nbsp;Taotao Yin ,&nbsp;Shuo Yuan ,&nbsp;Lingfang Wang ,&nbsp;Hui Lin ,&nbsp;Tianzhe Jin ,&nbsp;Ruiyi Xu ,&nbsp;Jiaxin Gu ,&nbsp;Shizhen Shen ,&nbsp;Xiaojing Chen ,&nbsp;Zhuoye Chen ,&nbsp;Ni Sima ,&nbsp;Lifeng Chen ,&nbsp;Weiguo Lu ,&nbsp;Xiao Li ,&nbsp;Xiaodong Cheng ,&nbsp;Hui Wang","doi":"10.1016/j.drup.2024.101151","DOIUrl":"10.1016/j.drup.2024.101151","url":null,"abstract":"<div><h3>Introduction</h3><div>Ovarian cancer is the most lethal gynecological cancer and presents significant therapeutic challenges. The discovery of synthetic lethality between PARP inhibitors (PARPi) and homologous recombination deficiency marked a new era in treating BRCA1/2-mutated tumors. However, PARPi resistance remains a major clinical challenge.</div></div><div><h3>Methods</h3><div>RNA sequencing was used to identify genes altered by PARPi treatment and LC-MS was used to detect proteins interacting with CYP1B1. Resistance mechanisms were explored through ATAC-seq and gene expression manipulation. Additional techniques, including micrococcal nuclease digestion assays, DAPI staining, and fluorescence microscopy, were used to assess changes in nuclear morphology and chromatin accessibility.</div></div><div><h3>Results</h3><div>The gradual exposure of Olaparib has developed a PARPi-resistant cell line, A2780-OlaR, which exhibits significant upregulation of CYP1B1 at both RNA and protein levels. Down-regulating CYP1B1 expression or using specific inhibitors decreased the cellular response to Olaparib. Linker histone H1.4 was identified as associated with CYP1B1. ATAC-seq showed differential chromatin accessibility between A2780-OlaR and parental cells, indicating that the downregulation of H1.4 was associated with increased chromatin accessibility and higher cell viability after Olaparib treatment.</div></div><div><h3>Conclusion</h3><div>Our findings reveal a novel role for CYP1B1 in driving PARPi resistance through distinct molecular mechanisms in A2780-OlaR. This study highlights the importance of chromatin accessibility in PARPi efficacy and suggests the CYP1B1/H1.4 axis as a promising therapeutic target for overcoming drug resistance in ovarian cancer, offering potentially therapeutic benefits.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101151"},"PeriodicalIF":15.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The important role of lactylation in regulating DNA damage repair and tumor chemotherapy resistance 乳化作用在调节 DNA 损伤修复和肿瘤化疗耐药性方面的重要作用
IF 24.3 1区 医学
Drug Resistance Updates Pub Date : 2024-09-06 DOI: 10.1016/j.drup.2024.101148
Jia Li, Zhe-Sheng Chen, Yihang Pan, Leli Zeng
{"title":"The important role of lactylation in regulating DNA damage repair and tumor chemotherapy resistance","authors":"Jia Li, Zhe-Sheng Chen, Yihang Pan, Leli Zeng","doi":"10.1016/j.drup.2024.101148","DOIUrl":"https://doi.org/10.1016/j.drup.2024.101148","url":null,"abstract":"","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"3 1","pages":"101148"},"PeriodicalIF":24.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RGS5+ lymphatic endothelial cells facilitate metastasis and acquired drug resistance of breast cancer through oxidative stress-sensing mechanism RGS5+淋巴内皮细胞通过氧化应激传感机制促进乳腺癌转移和获得性耐药性的产生
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-09-06 DOI: 10.1016/j.drup.2024.101149
Caixin Qiu , Chaoyi Tang , Yujun Tang , Ka Su , Xiao Chai , Zexu Zhan , Xing Niu , Jiehua Li
{"title":"RGS5+ lymphatic endothelial cells facilitate metastasis and acquired drug resistance of breast cancer through oxidative stress-sensing mechanism","authors":"Caixin Qiu ,&nbsp;Chaoyi Tang ,&nbsp;Yujun Tang ,&nbsp;Ka Su ,&nbsp;Xiao Chai ,&nbsp;Zexu Zhan ,&nbsp;Xing Niu ,&nbsp;Jiehua Li","doi":"10.1016/j.drup.2024.101149","DOIUrl":"10.1016/j.drup.2024.101149","url":null,"abstract":"<div><h3>Aims</h3><div>Oxidative stress reflected by elevated reactive oxygen species (ROS) in the tumor ecosystem, is a hallmark of human cancers. The mechanisms by which oxidative stress regulate the metastatic ecosystem and resistance remain elusive. This study aimed to dissect the oxidative stress-sensing machinery during the evolvement of early dissemination and acquired drug resistance in breast cancer.</div></div><div><h3>Methods</h3><div>Here, we constructed single-cell landscape of primary breast tumors and metastatic lymph nodes, and focused on RGS5<sup>+</sup> endothelial cell subpopulation in breast cancer metastasis and resistance.</div></div><div><h3>Results</h3><div>We reported on RGS5 as a master in endothelial cells sensing oxidative stress. RGS5<sup>+</sup> endothelial cells facilitated tumor-endothelial adhesion and transendothelial migration of breast cancer cells. Antioxidant suppressed oxidative stress-induced RGS5 expression in endothelial cells, and prevented adhesion and transendothelial migration of cancer cells. RGS5-overexpressed HLECs displayed attenuated glycolysis and oxidative phosphorylation. Drug-resistant HLECs with RGS5 overexpression conferred acquired drug resistance of breast cancer cells. Importantly, genetic knockdown of RGS5 prevented tumor growth and lymph node metastasis.</div></div><div><h3>Conclusions</h3><div>Our work demonstrates that RGS5 in lymphatic endothelial cells senses oxidative stress to promote breast cancer lymph node metastasis and resistance, providing a novel insight into a potentially targetable oxidative stress-sensing machinery in breast cancer treatment.</div></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101149"},"PeriodicalIF":15.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasmid-borne tigecycline resistance gene tet(X4) in Salmonella enterica and Escherichia coli isolates from a pediatric patient with diarrhea 从一名腹泻儿科患者体内分离出的肠炎沙门氏菌和大肠埃希氏菌中发现质粒携带的替加环素抗性基因 tet(X4)
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-09-02 DOI: 10.1016/j.drup.2024.101145
Zelin Yan , Yan Li , Yingling Ni, Xiaoni Xia, Yanyan Zhang, Yuchen Wu, Jing Zhang, Gongxiang Chen, Ruichao Li, Rong Zhang
{"title":"Plasmid-borne tigecycline resistance gene tet(X4) in Salmonella enterica and Escherichia coli isolates from a pediatric patient with diarrhea","authors":"Zelin Yan ,&nbsp;Yan Li ,&nbsp;Yingling Ni,&nbsp;Xiaoni Xia,&nbsp;Yanyan Zhang,&nbsp;Yuchen Wu,&nbsp;Jing Zhang,&nbsp;Gongxiang Chen,&nbsp;Ruichao Li,&nbsp;Rong Zhang","doi":"10.1016/j.drup.2024.101145","DOIUrl":"10.1016/j.drup.2024.101145","url":null,"abstract":"","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101145"},"PeriodicalIF":15.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of staphylococcal resistance to clinically relevant antibiotics 葡萄球菌对临床相关抗生素的耐药性机制
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-08-31 DOI: 10.1016/j.drup.2024.101147
Daniela Brdová, Tomáš Ruml, Jitka Viktorová
{"title":"Mechanism of staphylococcal resistance to clinically relevant antibiotics","authors":"Daniela Brdová,&nbsp;Tomáš Ruml,&nbsp;Jitka Viktorová","doi":"10.1016/j.drup.2024.101147","DOIUrl":"10.1016/j.drup.2024.101147","url":null,"abstract":"<div><p><em>Staphylococcus aureus</em>, a notorious pathogen with versatile virulence, poses a significant challenge to current antibiotic treatments due to its ability to develop resistance mechanisms against a variety of clinically relevant antibiotics. In this comprehensive review, we carefully dissect the resistance mechanisms employed by <em>S. aureus</em> against various antibiotics commonly used in clinical settings. The article navigates through intricate molecular pathways, elucidating the mechanisms by which <em>S. aureus</em> evades the therapeutic efficacy of antibiotics, such as β-lactams, vancomycin, daptomycin, linezolid, <em>etc</em>. Each antibiotic is scrutinised for its mechanism of action, impact on bacterial physiology, and the corresponding resistance strategies adopted by <em>S. aureus</em>. By synthesising the knowledge surrounding these resistance mechanisms, this review aims to serve as a comprehensive resource that provides a foundation for the development of innovative therapeutic strategies and alternative treatments for <em>S. aureus</em> infections. Understanding the evolving landscape of antibiotic resistance is imperative for devising effective countermeasures in the battle against this formidable pathogen.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101147"},"PeriodicalIF":15.8,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1368764624001055/pdfft?md5=12f715097caabdafe7529ca70e6a87b4&pid=1-s2.0-S1368764624001055-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the resistance to therapies in pancreatic ductal adenocarcinoma 揭示胰腺导管腺癌的抗药性。
IF 15.8 1区 医学
Drug Resistance Updates Pub Date : 2024-08-30 DOI: 10.1016/j.drup.2024.101146
Ashu Shah , Koelina Ganguly , Sanchita Rauth , Shamema S. Sheree , Imran Khan , Apar K. Ganti , Moorthy P. Ponnusamy , Sushil Kumar , Maneesh Jain , Surinder K. Batra
{"title":"Unveiling the resistance to therapies in pancreatic ductal adenocarcinoma","authors":"Ashu Shah ,&nbsp;Koelina Ganguly ,&nbsp;Sanchita Rauth ,&nbsp;Shamema S. Sheree ,&nbsp;Imran Khan ,&nbsp;Apar K. Ganti ,&nbsp;Moorthy P. Ponnusamy ,&nbsp;Sushil Kumar ,&nbsp;Maneesh Jain ,&nbsp;Surinder K. Batra","doi":"10.1016/j.drup.2024.101146","DOIUrl":"10.1016/j.drup.2024.101146","url":null,"abstract":"<div><p>Despite the ongoing advances in interventional strategies (surgery, chemotherapy, radiotherapy, and immunotherapy) for managing pancreatic ductal adenocarcinoma (PDAC), the development of therapy refractory phenotypes remains a significant challenge. Resistance to various therapeutic modalities in PDAC emanates from a combination of inherent and acquired factors and is attributable to cancer cell-intrinsic and -extrinsic mechanisms. The critical determinants of therapy resistance include oncogenic signaling and epigenetic modifications that drive cancer cell stemness and metabolic adaptations, CAF-mediated stromagenesis that results in ECM deposition altered mechanotransduction, and secretome and immune evasion. We reviewed the current understanding of these multifaceted mechanisms operating in the PDAC microenvironment, influencing the response to chemotherapy, radiotherapy, and immunotherapy regimens. We then describe how the lessons learned from these studies can guide us to discover novel therapeutic regimens to prevent, delay, or revert resistance and achieve durable clinical responses.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"77 ","pages":"Article 101146"},"PeriodicalIF":15.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信